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Abstract: In this paper, a combined neural network and an evolutionary programming scheme is proposed to improve the
quality of wound core distribution transformers in an industrial environment by exploiting information derived from both the
construction and transformer design phase. In particular, the neural network architecture is responsible for predicting transformer
iron losses prior to their assembly, based on several actual core measurements, transformer design parameters and the specific
core assembling. A genetic algorithm is applied to estimate the optimal core arrangement, (i.e. the way of core assembling)
that yields a set of three-phase transformers of minimal iron losses. The minimization is performed by exploiting information
derived from the neural network model resulting in a synergetic neural network-genetic algorithm scheme. After the transformer
construction, the prediction accuracy of the neural network model is evaluated. If accuracy is poor, a weight adaptation algorithm
is applied to improve the prediction performance. For the weight updating, both the current and the previous network knowledge
are taken into account. Application of the proposed neural network-genetic algorithm scheme to our industrial environment
indicates a significant reduction in the variation between the actual and the designed transformer iron losses. This further leads
to a reduction of the production cost since a smaller safety margin can be used for the transformer design.

1. Introduction transformer iron losses violate this limit, the manufac-
turer is forced to pay loss penalties. This, however,
Construction of three-phase distribution transform- apart from reducing the manufacturer’s profit, it also
ers of high quality at a minimum possible cost is an ruins the good reputation of the industry. In order to
important key for any transformer manufacturing in-  satisfy the customers’ requirements, the transformers
dustry to face today’s market competition [28]. As one are first designed and several parameters are selected so
measure of transformer quality, the iron losses (core that the transformer iron losses are equal to or slightly
losses) are used. In particular, the higher the trans- smaller than those specified by the customers (guaran-
former quality is, the less the transformer losses be- teed losses).
come [5,20]. Usually, the electric power suppliers, (i.e. Core losses consist of eddy current losses and hys-
the customers), determine the transformer quality by teresis losses [1]. For a given volume of core, the eddy
specifying an upper iron loss limit. In case that the current losses are nearly proportional to the square of
the product of power frequency, flux density and lami-
nation thickness. Regarding the hysteresis losses, they
-*(forrzsréon,gm% ;Ut;:fiingg:%'aoégnzu'fjltf;riség:ﬁ?g“g)ei;tsgn'fﬁg are associated with the magnetization and demagneti-
:;gcnzl ?I'r;chnic::alpbniversigt]y of Atr?ens, G’?Zece, 9, Heroon Polytech- zation cycle of the gore [22]. Thus, edqy Curr.ent.losses
niou Str., 157 73, Zografou, Athens, Greece. Tel.: +30 1 772 30 39; ¢an be reduced using, for example, thin laminations of
Fax: +30 1 772 24 92; E-mail: ndoulam@cs.ntua.gr. high-resistivity material, while reduction of hysteresis
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losses is achieved using a magnetic material of smaller  In this paper, the improvement of transformer qual-
hysteresis loop [22]. Although, in theory, this is a ity is addressed through an original point of view; the
sufficient condition to meet customer’s requirements, improvement is achieved during the transformer pro-
in practice, additional parameters, such as the quality duction phase and not during the transformer design
of cores that assemble the transformer, are involved phase. Our work is concentrated on wound core distri-
during the construction process, which deviate the ac- pytion transformers. In particular, the technique used
tual losses from the designed ones. Consequently, itis ajms at estimating the optimal core arrangement for a
possible for the transformer iron losses to exceed the given design so that transformers of best quality (min-
guaranteed losses. , imal losses) are constructed. In fact, the proposed
Mostworks, reported in the literature, have been con- o404 compensates the effect of constructional de-
ﬁf ntraigd Iol? the ?rsglmationhof. transformer .Iolssfes n "’:jfects on transformer iron losses by appropriately com-
eoretical basis. These lechniques are mainly focuse bining the individual cores. Such an approach reduces
on the analysis of the core electromagnetic field. In L .

. . . . the deviation between the actual and the theoretical
particular, in [18] the 3D-leakage fields are estimated, iron losses and thus yields losses closer to the designed
while in [11] 3D magnetic-field calculations are used For thi y i f be d 9 d
to evaluate the performance of several parameters on ones. For this réason, transiormers can be designe

using a higher safety margin since it is less possible for

power transformers. Other approaches are based on-=>"" .
the method of finite elements either to compute the their iron losses to exceed the guaranteed losses, which

core loss currents [6] or to estimate the loss distribu- 1€2ds to a reduction of the total production cost.

tion in case of stacked transformers [21]. Apart from  Theoptimal core arrangementis estimated in this pa-
the above mentioned works, which are mainly based Per through a combined neural network-genetic algo-
on the arithmetic analysis of the core electromagnetic rithm scheme. The neural network architecture is used

field, modeling of three-phase transformers has been to accurately estimate the transformer losses, while the

also proposed based on the analysis of their magnetic
circuits [26].
Other approaches used to improve the calculation

genetic algorithm exploits the neural network output
to determine that core arrangement of individual cores,
which produces a set of three-phase transformers of op-

accuracy of transformer iron losses are based on exper- timal quality, (i.e. of minimal losses). Finally, the pre-

imental observations. In particular, in [24,27] linear or
simple non-linear models have been proposed to relate
transformer iron losses with electromagnetic and geo-
metric properties. Furthermore, in [14] estimation of
transformer losses is performed based on experimental

diction accuracy of the neural network model is eval-
uated, after the transformer construction. In case that
the prediction accuracy is poor, a weight adaptation is
activated to improve the network performance. For the
weight updating, a novel algorithm is proposed in this

curves. However, these approaches present satisfactorypaper so that (i) the network output is approximately

performance only for data (transformers) on which the

model parameters have been estimated. The model ac-

curacy deteriorates in case of data that are not included
in the “training set”. This is due to the fact that there is
not a simple and analytical relationship expressing the
impact of the aforementioned parameters on the trans-
former performance, as the previous models assume.
Regardless of the method adopted, theoretical or ex-
perimental, and despite the model accuracy, in all the
aforementioned approaches the reduction of iron losses
is achieved through better transformer design. For this
reason, all the above-mentioned models provide one
prediction value for the iron losses of all the transform-
ers of the same production batch. Unfortunately, this is
never verified in an actual industrial environment due
to constructional defects. More specifically, it has been
found that the maximum divergence between the theo-
retical and the actual iron losses could be ug-tb0%
for a given production batch [7,9].

equalto the currentiron losses and (ii) a minimal degra-
dation over the previous network knowledge is pro-
vided. The proposed scheme has been implemented
to a transformer manufacturing industry for increasing
the quality of the produced transformers.

This paper is organized as follows: Section 2
presents the problem formulation and describes the
techniques used in the current practice for transformer
design as well as core assembling. The neural network
architecture used to predict transformer iron losses is
presented in Section 3, while Section 4 explains the
weight adaptation mechanism. The genetic algorithm-
based grouping method is discussed in Section 5 to
estimate the optimal core arrangement that generates
transformers of minimal losses. Application of the pro-
posed neural network-genetic algorithm scheme to our
industrial environment is described in Section 6, while
Section 7 concludes the paper.
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Fig. 1. A graphical representation of a wound core transformer.
2. Problem description 2.1. Transformer design

The transformers are designed so that the theoretical

A three-phase wound core distribution transformer iron losses, say?!, satisfy the following equation,

consists of two small and two large individual cores.
The difference between small and large cores is the Pl ~(1—7)P (2)
width. In general, the width of a small core is the \\nerep, are the iron losses specified by the customers,
half of the width of a large core. The order that these |\ hile 0 < ~ < 1 a safety margin. A typical value for
four cores are arranged to constructathree—phasetrans—safety marginy is 0.05. It should be mentioned that

former is shown in Fig. 1. Particularly, the orderis; a | transformers of the same design present the same
small core, followed by two large cores, followed by  theoretical iron losses.

another small core [2]. Given a fixed number of pos-  Based on Eq. (2) and using the transformer geometry
sible small and large cores, we can determine the total and the typical loss curve, the theoretical iron losses
number of the transformers that may be constructed. of the individual cores as well as the losses of the as-

In particular, giver2 = M small cores and « M large sembled transformer are estimated [9,12]. However,
cores, we can construct exacfly different transform- the actual core losses deviate from the theoretical ones
ers at the same time. Let us denote atheith trans- due to constructional defects, producing cores of lower
former among allM possible { = 1,2,..., M). Let or higher quality than the designed one. Therefore if
us also denote as;, i = 1,2,...,2 % M, the ith a random core arrangement is adopted, it is probable
small individual core, while a&,i = 1,2,...,2 % M, to assemble four low-quality cores together, generating
the ith large core. Assuming that the transformgr ~ transformers of low quality. To avoid this, we use a
consists of thes, and thes, small core (withp /g, core grouping process, so that cores of low-quality are

p,q € {1,2,...,M})and thel,, and thel,, large core combined with cores of high-quality to produce three-
(with m # n, n,m € {1,2,..., M}), can be written phase transformers of iron losses close to the designed
in a vector form as follows ones.

ti = [Splmlns q]T (1) 2.2. The current core grouping methods

where in the previous equation we have taken into ac-  Two different approaches are used in the current
count the pre-determined core arrangement as depicted practice to perform the core grouping. In the first ap-
in Fig. 1. proach, the cores are classified into “quality classes”
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according to the deviation of their actual iron losses 2.3. The proposed scheme

from the theoretical ones (quality class method). For

example, let us assume that three quality classes are The block diagram of the proposed scheme is il-
available, named as A, Band C respective|y_ The class lustrated in Flg 2. Initially, the transformers are de-
A contains all small or large cores whose the quality Signed to satisfy, at least theoretically, the customers’
(iron losses) is around the designed one. On the con- réquirements (with perhaps a safety margin) and then,
trary, cores of lower quality than the cores of the class A the individual cores are constructed and several mea-
are classified into class B, while cores of higher quality ;urements are taken for each core to determine its qual-
into class C. Then, a transformer is constructed by as- 'tY' These measurement.s and severgl transformer de-
sembling either a) one small core and one large core of sign parameters along with the specified core arrange-

class B and one small core and one large core of class C ment are fed as inputs in a neural network structure,
9 responsible for predicting the actual transformer losses.
or b) four cores of class A.

i . In the following, the optimal core arrangement is esti-
However, such an approach assigns the same quality mated, which produces transformers of the best qual-

grades to all cores belonging to the same quality class. ity using a genetic algorithm grouping scheme. After
For this reason, another grouping process is also used in the transformer construction, the prediction accuracy
the current practice based on the minimal deviation of of the network model is monitored (evaluation phase).
the core losses (minimal deviation method) [8]. Inboth  |f the prediction accuracy is poor, a weight adaptation
approaches as a measure of the transformer quality the algorithm is activated to estimate new network weights
sum of the losses of the four individual cores is used, which are then used to predict future samples (trans-

thatis formers) of the process. Otherwise, the same weights
are used as shown in Fig. 2.
=P, + P + P + 15 and (3a)
3. Transformer iron loss modeling
Fj, =P, +P +P +P . .
' g ! " (3b) The neural network architecture used for predicting

=2 (P, + P/)

where Eq. (3a) refers to the actual losses, while Eq. (3b)
to the theoretical ones. In Eq. (3)¢, and P2 (P!
andP;q) denotes the actual (theoretical) losses of the
small coress,, ands, of transformert; [see Eq. (1)].
Similarly, P* and P* (P andP, ) are the actual
(theoretical) losses of the large coigsof ¢;.

However, the transformer losses, both the actual and
the theoretical ones?? and P/ respectively, diverge
from f¢ and F{, since additional losses in general
appear during the core assembling [2]. In particular,
Pt > Ff, andP{ > F}. For example, reordering
the two small or the two large cores of a transformer,
results in different actual iron losses, (i£;), though
the average losses of the four cores, (£€!), remain

the same. For this reason, the current grouping methods

do not provide the optimal arrangement of all available
2 M small an® x M large cores so that transformers

of minimal losses are constructed. To overcome the
aforementioned difficulties, a novel synergetic neural
network-genetic algorithm scheme is adopted in this
paper.

the transformer iron losses is described in this section.
Let us gather in the vectar(¢;) all network features

of transformert;. Let us also denote ag, (z(t;))

the network output in case thatt;) is the network
input. The subscriptv indicates the dependence of
the network output on its weights and biases. In our
case, we consider that the network approximates the
actual specific iron losses of the transformgfi.e. the
normalized losses per weight unit). Particularly, it is
held that

Sty = Pl /Ky, (4)

whereS{ corresponds to the actual specific iron losses
of the transformet;, and K, to its actual core weight.

The neural network models the non-linear relation-
ship, sayy(-), between the input featurest,) and the
specific iron losses’,

St = gla(ts)) (5)

However, under different production conditions, (i.e.
different thickness, grade and/or supplier of the mag-
netic material), different non-linear relationship exists.
This is due to the fact that different type of magnetic
material has a different effect on the transformer iron
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Fig. 2. Block diagram of the proposed architecture.

losses, while different suppliers usually follow a spe- termined. In the following analysis, the iron loss mod-

cific technology for producing the magnetic material. eling is performed for a given production condition,

Assuming thatZ different production conditions are  since similar conclusions can be drawn for the other
available, thenL different neural networks are used, conditions too.

each of which corresponds to a specific condition. Se-  Afeedforward neural network architecture is adopted
lection of the most appropriate condition is performed in this paper to approximate the unknown function
during the design phase, where both the type of the ¢(-)[13]. Figure 3illustrates such a network, consisting
magnetic material and the respective supplier are de- of one hidden layer dfneurons, one output neuron and
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Fig. 3. The feedforward neural network used to predict transformer losses.
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X, (t)

X,(t;)

1
p input elements. Let us denote by 1,i =1,...,1,
k=1,...,pthe weights, which connect thith hidden

neuron to the:th input element and as; ,1 the bias

of theith hidden neuron. These weights and biases are
also illustrated in Fig. 3 for clarity. Then, we form the
(p+1) x Lvectorsw;[wi 1 ... wipr1]T,i=1,2,...,1
containing all the weights and biases of itie hidden
neuron. In this case, the output of all hidden neurons
can be written in a matrix form as follows

uy(z(t:)) flwf - x(t))

u(z(t:)) : :
wi(x(t;)) fwl - 2(t)) ] (6)
=fW" z(t))

whereu(z(t;)) = [ui(z(t;)) ... w(z(t;))]T is a vec-
tor containing the outputs of all hidden neurons,
ug(z(t;)), k = 1,...,1, in case that:(¢;) is the net-
work input. In Eq. (6)V denotes &p + 1) x [ matrix,

the columns of which correspond to the weight vector
w; that iIsW = [wyws ... w;], while f(-) is a vector-
valued function, the elements of which correspond to
the activation functiorf(-), of the hidden neurons. In

work weights and biases. The network output, which
provides a non-linear approximation, s@y) of func-
tion g(-) and thus an estimaté,g of the specific iron
lossesSt, is given by the following equation

yu(z(t;)) = S‘g =l u(z(t;) + 6 (7

where, in this case, a linear activation function has
been used for the output neuron, since the network
output approximates a continuous valued signal, (i.e.
the specific iron losses of a transformer).

A training set ofN samples (transformers), sé@yis
used to estimate the network weights The training
set,T = {(z(t1),5¢),..., (z(tn),S¢, )}, contains
the actual specific iron losses dftransformers, which
have been constructed under the same production con-
dition, along with the respective network features. The
network is trained to minimize the mean squared value
of the error over all samples of sét

N

> {SE — yu)(@(t:) }

i=1

1
2

2

C (8)

In our approach, a second order method has been

our case, the sigmoid function has been selected as theselected to train the network based on a modification

activation function of all hidden neurons of the network.
Let us also define by = [vivs ... )T anl x 1 vec-

tor, which contains the network weights, say con-

necting the ith hidden neuron to the output neuron. Let

us also define a&the bias of the output neuron. Then,

vectorw = [wiwl ...wlvT0]T represents all net-

of the Marquardt-Levenberg algorithm, as presented
in [17]. This algorithm has been selected due to its effi-

ciency and fast convergence. Furthermore, a cross val-
idation method has been incorporated in the proposed
scheme to improve the generalization performance of
the network [13].
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Table 1
Features selected by the PCA, which are used as inputs to the neural
network architecture

Symbol
z1
2
3
T4

Expression
B

(Usp + Ulm + Ul” + USq )/4
(Vep + Vi, + Vi, +Vs,)/4

K¢ /K!

Fa /Ft
(82, +5¢ )/ stp +5¢)
(Sg +s8)/ (st +s;n)
(an +52) /(S +5t)

Ts5
xe t
7

8

A principal component analysis (PCA) has been
also included to appropriately select the input features.
Since most of the measurements obtained are highly
correlated, it is useful for improving the network train-
ing and generalization performance to discard the re-
dundant information. Principal component analysis
eliminates those input components, which contribute
the least to the network output, while retaining the most
important (principal) ones. To implement the PCA,
a neural network architecture similar to that proposed
in [25] has been adopted in this paper. The num-
ber of the principal components extracted is estimated
through the amount of energy that those components
can retain. In particular, in our case, the components,
which correspond to 85% of the total energy (8 in our
case), are selected as the most significant.

In Table 1, we summarize the features, which are
closer to that specified by the PCA to provide a phys-
ical explanation of the most important features used.
More specifically, feature is the rated magnetic in-
duction, which is also used in order to calculate iron
losses at the design phase by using the loss curve (de-
sign parameters). This is also denotedzam this ta-
ble. Features:; andzxs express the average specific
losses (W/Kg at 15000 Gauss, and 17000 Gauss, re-
spectively) of magnetic material of the four individual
cores used for transformer construction. These param-
eters are also denoted &sandV respectively in the
table. The subscripts of these variables refer to one
of the four cores that assemble the transfortpesim-
ilarly to Eq. (1). For examplel/, denotes average
specific losses of magnetic material at 1500 Gauss for
the left small coreq,), while U;,, refers to the second
(right) large corel(,). Featurer, is the ratio of actual
(K{) over theoretical weightk/,) of the four individ-
ual cores that assemble Featurers is equal to the
ratio of actual(F;") over theoretica(F} ) iron losses
of the four individual cores of ;. The significance of
the featurers is that the iron losses of the three-phase
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transformer depend on the iron losses of its individual
cores. In the industrial environment considered, it is
observed that the arrangement of cores influences the
assembled transformer core losses. This is reflected
through the selection of features, =7, andxs (see
Table 1). In all cases, the notation for the four cores is
similar to Eq. (1). Forinstance,] refers to the actual
specific iron loss of the,, small core (i.e. thefirstone),
while S} to the theoretical ones.

4. Network weight adaptation

The weight adaptation training algorithm modifies
the network weights so that the network output ap-
propriately responses to the new data, while simulta-
neously providing a minimal degradation over the old
information [4]. Particularly, let us denote hy, the
network weights before the weight adaptation. Let us
assume that these weights have been estimated using
data of sefl". Let us also assume that during the eval-
uation phase, m transformers have been examined and
that their actual specific iron losses significantly devi-
ate from the predicted ones. These transformers are de-
noted as;,i = 1,...,m, where vector has the same
form as vectort (Eq. (1)). In this case, a new train-
ing set, T, = {((21),5%) ..., (z(zm), 52 )}.. is
created consisting of pairs of the featusgs;) for the
transformers; along with the respective actual specific
iron lossesS¢.. Then, the new network weights, say
Wq, are estimated by minimizing the following equa-
tion,

w, = arg! min = Z Yo (t:) — S2)*
o = (9a)
a2
subject to
Yuw, (#(25)) = 87, fori=1,...,m (9b)
whereD; = (yu(t;) — Sgy)Q. Equation (9a) indicates

that the network weights are adapted in such a way that
a minimal degradation over the existing old informa-
tion, as that expressed by the §e&tis accomplished.
The minimization constraint [Eq. (9b)] means that the
network output, after the weight adaptation, is approx-
imately equal to the actual specific iron losses for all
transformers; of T..

Assuming that a small weight perturbation is suffi-
cient to perform the weight modification, we can relate
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the weights before and after the adaptation as follows

Wq = wp + Aw (10)

whereAw represents small increments of the network
weights.

The effect of Aw in Eqg. (9) can be expressed by
estimating the sensitivity of erro®; with respect to
the network weights and by linearizing Eq. (9b) using a
first order Taylor series expansion. In this case, Eq. (9)
yields to the following constraint minimization

min %AwT I T Aw (11a)
subject to
b=A Aw (11b)

where matrixJ corresponds to the Jacobian matrix of
the errordD;, while vectom and matrixA4 are expressed
interms of the previous weights;,. More details about
the form of.J, A andb can be found in the appendices A
and B.

The gradient projection method is used in our case
to minimize Eq. (11a) subject to Eq. (11b) [19]. In
particular, the algorithm starts from an initial feasible
point[i.e. a pointwhich satisfies Eq. (11b)], sAw(0)
and then the weight increments are updated as follows

Aw(n+ 1) = Aw(n) + y(n)h(n) (12)

wherev(n) is a scalar that determines the conver-
gence rate, whilé(n) indicates the negative gradient
of Eqg. (11a) onto the subspace that is tangent to the
surface defined by the constraint at tité iteration of

the algorithm,

h(n) =—P-J-Aw(n) (13)

with P=1—-AT(A-AT)"1A (14)

As initial feasible poinfAw(0), the minimal distance
fromthe originto the surfade- A-Aw = 0is selected,
given by

Aw(0) = AT - (A- AT 1. b (15)

After the weight adaptation, the old information, (i.e.
the training setl’), is updated by inserting in it all
pairs of setT.. However, in this case, the size of
T continuously increases, since more and more pairs
are included. For a more efficient implementation, the
number of pairs ofl’ can be considered constant and
thus each time new pairs get into the $etthe oldest
ones are removed from it.
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5. Optimal core arrangement

The aforementioned neural network architecture pre-
dicts the transformer iron losses, for a given produc-
tion condition, based on several core measurements,
transformer design parameters and taking into account
a given core arrangement and core assembling. This
means that for different cores and/or different core ar-
rangement, the network provides different predicted
iron losses. Exploiting this information, we can esti-
mate, for the giver x M small and® x M large avail-
able cores, that core arrangement which produdes
transformers of the highest quality (minimum losses).

Let us denote ag a vector containing all thé/
possible constructed transformers

c=vedT"}
with
T = [taty .. . ta]

(16a)

(16Db)

where ve¢T'} presents a vector formed by stacking up
all rows of matrixT'.

As observed from Eq. (16a), the dimensioncds
4M x 1 since each transformeg is represented by
a4 x 1 vector as Eq. (1) indicates (four individual
cores). Vector provides a possible arrangement (com-
bination) of all small and large cores, which construct
the M three-phase transformers. Therefore, different
elements of: correspond to different arrangement of
individual cores. Based on the above definition, it is
clear that searching for a set df transformers of the
highest quality is equivalent to searching for a vector
that minimizes the following equation

} 17)

wherec, is the vector corresponding to the optimal
core arrangement.

In Eq. (17), the actual transformer iron losséy?,
are involved, which are in fact, unknown before the
transformer construction. For this reason, for the min-
imization of Eq. (17), an approximation &f; is used
based onthe aforementioned neural network model. As
mentioned in Section 3, the neural network estimates
the specific iron lossesSy. instead of . Conse-
quently, an estimate of the actual lossi$, is obtained
by multiplying the network output (specific losses) by
the actual weights of the four cores that assemble the
transformert;. Furthermore, to avoid the risk of vio-
lating the customers’ requirements, a very large value
is assigned to the predicted losses that lead to trans-

M
. . a
Copt =arg min E(c) =arg min E P
C C

=1
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Fig. 4. An example of the genetic algorithm representation.

formers of unacceptable quality, (i.e. their losses are
somehow greater thaR,), with perhaps a safety mar-
gin estimated based on the relative prediction error of
the network.

For a typical number of small/large cores, direct
minimization of Eq. (17) is practically infeasible since
the computational complexity for an exhaustive search
is very high. For example, assuming that 100 small
and 100 large individual cores are available, about
5.35*1(?2 combinations of core arrangements should
be considered! For this reason, the minimization pro-
cess is performed, in the following, using a genetic
algorithm (GA) [23], resulting in synergetic neural
network-genetic algorithm scheme for optimal trans-
former construction.

5.1. Genetic algorithm

In the GA approach, the vecteris considered as
one chromosome, while its elements, (i.e. the serial
numbers of individual cores), as genetic material of
the respective chromosome. Figure 4 presents an ex-
ample of such representation in case of six large and
six small cores. Initially, a population of chro-
mosomes is created, sa&(0) = {c1(0),...,c.(0)}
wherec;(0),7 = 1,..., L corresponds to the ith chro-
mosome of the populatioR(0). Although, in theory,
the initial population can be randomly selected, fast
convergence is achieved in case that the genetic ma-
terial of the initial chromosomes is of somehow good
quality. For this reason, in our case thenitial chro-

mosome (vectoe). Since this measure is inverse pro-

portional to the transformer quality, the fithess function
of the genetic algorithm, which is responsible for mea-
suring the chromosome quality, is given by following

equation.

Fei(n)) =

where we recall thaE(c;(n)) denotes the sum of the
predicted iron losses over all transformers constructed
using the core arrangement of the chromosente).

The constanB in Eq. (18) is selected so that negative
values of the fitness function are avoided.

Based onF'(¢;(n)) for all chromosomes;(n),i =
1,2,..., L of the current populatio®(n), appropri-
ate “parents” are selected so that a fitter chromosome
has a higher chance of survival in next generation.
In particular, in our case, a probability is assigned to
each chromosome, equalkic;(n))/ Zle F(ci(n))
and then) < L chromosomes are randomly selected
based on their assigned probabilities as candidate par-
ents (roulette wheel selection procedure [10]).

A set of new chromosomes (offspring) is then pro-
duced by mating the genetic material of the parents us-
ing a crossover operator, which defines how the genes
should be exchanged to produce the next generation.
Several crossover mechanisms have been reported in
the literature. In our approach, a modification of the
uniform crossover operator [10,23] has been adopted.
This is due to the fact that it is possible for an individual
core to appear more than once in the genetic material of
each new generated chromosome. This means that one

B — E(ci(n)) (18)

mosomes are selected as possible solutions of the coreindividual core is placed to more than one transformer

grouping method used in the current practice.

The performance of each chromosome, which actu-
ally represents a particular core arrangement, is eval-
uated as the sum of the predicted actual iron losses,
(provided by the neural network model) over all trans-
formers that can be constructed by this particular chro-

or to more than one position of the same transformer,
which corresponds to an unacceptable core arrange-
ment. For this reason, the following modification of the
uniform crossover operator is adopted and explained
using a simple example of six small and six large cores
(Fig. 5). In this example, it is assumed that the two
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utation mechanism used.

parents exchange their genes between the crossoverolder ones. Several GA cycles take place by repeating

points 2, 3 and 4. As observed, the gefi£8,12,1 of

the 1st parent are exchanged with the gef&42,3

of the 2nd parent. By applying this exchange of genes,
in the 1st chromosome, the genes 8 and 3 appear twice,
while genes 10 and 1 disappear. An equivalent problem
occurs in the 2nd chromosome. For this reason, in the
1st chromosome, the gengk0,1} are one-by-one ex-
changed with genef8,3} as Fig. 5 depicts. The same
happens for the 2nd chromosome.

The next step of the algorithm is to apply mutation
to the newly created chromosomes, introducing ran-
dom gene variations that are useful for restoring lost
genetic material, or for producing new material that
corresponds to new search areas. In our case, the ge-
netic material of a chromosome is randomly mutated
with a probabilityp,,. In particular, for each gene, a
random number is generated uniformly distributed in
the interval [0 1] and if this number is smaller than the
mutation ratep,,, then this gene undergoes mutation.
To avoid the appearance of an individual core more than
once in the genetic string after mutation, (i.e. to pre-

the procedures of fithess evaluation, parent selection,
crossover and mutation, until the population converges
to an optimal solution.

5.2. Explanation of the GA convergence

As can be seen in the following section of the exper-
imental results, the proposed genetic algorithm scheme
sufficiently estimates the optimal core arrangement so
that transformers of minimal losses (best quality) are
constructed, even in case that a large number of cores
(variables) are involved in the minimization process.
This is due to the fact that the variables (individual
cores) do not take any arbitrary value. Instead, the
cores are designed so that Eq. (2) is satisfied and thus
they present the same theoretical losses. Divergence
from this requirement is due to constructional defects
during the core production phase. Assuming that the
industry follows specified constructional standards, this
divergence is not so large. Consequently, the form of
Eq. (17) is not so complex as is expected from the num-

serve valid core arrangement), we swap each mutated ber of variables (large/small cores) involved in the pro-
gene for other randomly selected of the same category, cess. Another issue towards this direction is that in-

(i.e. large or small core). This is illustrated in Fig. 6.
In this figure, we assume that the large core with la-
bel ‘12’, (the third gene) undergoes mutation. Thus, it
is swapped for another randomly selected gene of the
same category, for example the large core with label
‘7’ in our case.
After that, the next populatiof(n + 1) is created
by inserting the new chromosomes and deleting the

dividual cores are usually produced in groups. There-
fore, it is expected that for cores belonging to the same
group to present similar characteristics (losses) since
they undergo almost the same constructional effects.
In addition, as initial population of the genetic algo-
rithm, chromosomes obtained from the current group-
ing method are used. This selection further improves
the GA convergence since the algorithm starts from
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Table 2
The neural network training and configurations details
Production conditions
Neural network (MLP) training and configuration details #1 #2 #3
Total number of measurement sets (MS) 2240 2350 1980
Number of MS of the training set (75% of the total MS) 1680 1762 1485
Number of MS of the validation set (10% of the training set) 168 235 198
Number of MS of the test set (25% of the total MS) 560 588 495
Slope of the sigmoid (activation) function 1 1 1
Number of neurons of the input layer 8 8 8
Number of neurons of the hidden layer 5 6 4
Number of neurons of the output layer 1 1 1
g 21 21
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Fig. 7. Prediction performance of transformer specific iron losses for the first production condition, (a) using the typical loss curve (Current

Practice), (b) using the proposed neural network model.

chromosomes of somehow good quality. This selec-
tion also leads to construction of transformers of better
quality (i.e. less losses) than those obtained from the
current grouping method. The GA improves the per-

formance of the initial chromosomes, which represent
the core arrangements of the current grouping.

6. Experimental results

In our industrial environment, three different pro-
duction conditions have been examined. The first cor-
responds to a magnetic steel of grade M3, according to
the USA AISI 1983, thickness of 0.23 mm, while the
supplier of the material is the Supplier A. For the sec-
ond condition, a magnetic steel of grade M4, thickness
of 0.27 mm and the Supplier B are selected. Finally,
in the third condition, the grade is Hi-B, the thickness
0.23 mm and the Supplier A.

6.1. Neural network modeling

A set consisting ofV = 1680 actual industrial mea-
surements is used to train the network in case of the

first production condition. The 10% of the training data
are selected as validation set, while 560 test data have
been used to evaluate the prediction accuracy of the
network. Similar number of data has been also used for
the training, testing, and validation sets of the other two
conditions. The network configurations, which have
been used for predicting the transformer iron losses,
are presented in Table 2 for the three aforementioned
production conditions.

Figures 7(a) and (b) present the Q-Q (Quantile-
Quantile) plots [16] of the specific iron losses, using
the typical loss curve (current practice) and the pro-
posed neural network method respectively, for the first
production condition. According to this method, the
real specific iron losses are plotted versus the predicted
ones and as a result, perfect prediction lies on a line of
45° slope. As is observed, the neural network-based
prediction scheme provides, on average, more accurate
results than the typical loss curve method. In particu-
lar, the current method (loss curve) shows a maximum
absolute relative error of 9.9%, while the respective er-
ror of the neural network scheme is 4.8%. As far as
the average error is concerned, the proposed method
yields 1.5% error instead of 2.9% of the current prac-
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Table 3
Comparison of specific iron loss prediction using the typical loss curve method and the neural network model

for three different production conditions

#1 Production condition

#2 Production condition

#3 Production condition

Typical Neural Typical Neural Typical Neural
loss curve network loss curve network loss curve network
Relative error 2.9 15 3.1 1.7 3.3 1.8
Minimum Error (%) -6.1 —4.5 -7.1 —-4.9 —7.4 -5.1
Maximum Error (%) 9.9 4.8 10.6 5.5 10.8 5.8

tice. Similar results are also obtained for the other two
production conditions and these results are summarized
in Table 3.

6.2. Weight adaptation

The weight adaptation algorithm described in Sec-
tion 4 has been applied to our industrial environment
to improve the prediction accuracy of the network in
future production batches. This means that the network
is able to adapt its performance in slight changes of
the production condition. In particular, the network
performance is monitored during the evaluation phase,
and in case that the prediction error exceeds a pre-
determined threshold, for a given production batch, the
weight adaptation algorithm is activated. Figure 8(a)
illustrates the average prediction error for several pro-
duction batches, all consisting of 50 transformers, along
with the specified threshold. In the experiments con-
sidered, this threshold is defined to be 10% higher than
the average prediction error. As is observed, at the
19th production batch the prediction error exceeds this
threshold and the weight adaptation is activated. To
avoid large number of equations [Eq. (11b)], only 10%
(i.e. 5 transformers) of the 19th batch are included in
the setl, selected using a principal component analy-

tial populationP(0), the second, on the quality class
method of the current grouping process, while the third,
on the minimal deviation method (see Section 2). For
the quality class method possible solutions can be
used as the initial population, while for the minimal
deviation method, thé, best core arrangements have
been selected. In all cases, a mutation rate equal to
5% has been used, the population was 25 chromosomes
while at each iteration 30% of the total population (i.e.
8) parents have been adopted. As is observed, the worst
performance appears to be the random selection, while
the minimal deviation method presents the fastest con-
vergence.

The total transformer losses over all 50 exam-
ined transformers versus mutation rate is presented in
Fig. 10(a), for the three different approaches used for
initial population selection. As can be seen, in case
of high mutation rates, the performance of the class
quality and the minimal deviation methods are almost
similar, while the random initial population selection
provides the slowest convergence for all mutation rates.
In this case the numbé)p is equal to 30% of the total
population, while 100 GA cycles have been used to
terminate the iteration process. Furthermore, it seems
that in all cases the minimal losses fall in the range
of 4-6% mutation rate. This is due to the fact that

sis. The remaining transformers are used as test set in small mutation probability may trap the solution to a

order to evaluate the network prediction performance.
After the weight updating, the prediction accuracy has
been improved as depicted in Fig. 8(b), where the pre-
diction error for the batches 20 to 30 is shown.

6.3. Genetic algorithm performance

In the following experiments, the genetic algorithm
has been applied to group 100 small and 100 large
cores of the same production batch of 50 transformers,
100 kVA, 50 Hz of the second production condition.

Figure 9 presents the effect of the initial population
selection on the convergence rate of the GA. In this
figure, three different approaches have been examined.
The first is based on a random selection of the ini-

local minimum. Instead, large probability leads to ran-
dom search, which deteriorates the GA performance.
However, the minimal deviation method outperforms
compared to the other two ones.

Figure 10(b) presents the mutation rate versus total
transformer losses for different values@{10%, 30%
and 50% of the total population), in case that the min-
imal deviation method is used as the initial population
selection and for 100 GA cycles. Mutation probabili-
ties around 4-6% provide the best results in this case
too. It can be seen, from this figure, that, as the number
of Q increases, the algorithm reaches the optimal solu-
tion in fewer GA cycles. However, large values@f
also increase the cycle computational load, which may
affect the total GA complexity. Table 4 presents the
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Fig. 9. The genetic algorithm convergence for different initial popu-
lation selection mechanisms.

average computational load per GA cycle for different
values of) along with the average number of iterations
(cycles) required to achieve total iron loss less than
10900 W. In this case, the results have been obtained
on a P-11 350 MHz PC and a mutation rate equal to 5%
has been used. It can be seen that 30% of the total
population provides the fastest convergence although it
requires greater number of cycles than otheiThe ef-
fect of the mutation probability on the average compu-
tational load is also shown in Table 5. The best number
of parents, (i.e) = 30%), has been used in this case.
This table indicates the average computational load per
GA cycle, along with the GA cycles required to achieve
a minimum loss less than 10900 W. It is observed that
mutation probability around 6% yields the best results
as far as the computational cost is concerned.

As a result, the values of the GA parameters, which
are involved in the process and optimize the GA conver-

gence, are the minimal deviation grouping method as
the initial population, mutation rate around 6%, num-
ber of parents undergone crossover 30% of the total
population, and constant population size equal to 25
chromosomes. These values are used in the following
results.

Figure 11(a) evaluates the performance of the ge-
netic algorithm by comparing the predicted with the
actual iron losses (measured after the transformer con-
struction) for the same batch of 50 transformers of
100 kVA, 50 Hz of the second production condition.
Similarly, Figure 11(b) evaluates the performance of
the proposed scheme for another batch of 50 transform-
ers of 250 kVA, 50 Hz, second production condition.

The computational complexity of the proposed neu-
ral network-genetic algorithm scheme depends on a)
the cost required for the GA convergence and b) on
the testing time that the neural network takes for pre-
dicting the transformer actual losses for a give core
arrangement. For the GA, 8 different runs have been
conducted and the core arrangement which yields the
minimal losses over all runs is selected as the most ap-
propriate. At each run, the GA terminates when the
best core arrangement remains constant for 30 number
of generations, indicating that further optimization is
unlikely. Using this termination criterion, the average
number of GA cycles over all 8 runs is 168. Since the
cost of each cycle i817 ms (see Tablé for Q = 30%
and mutation raté%), the total complexity of the GA
over all cycles and runs is 8*168*517 mas11.58 min.

At each GA cycle, the neural network is activated to
predict the actual transformer losses. Since in our case,
50 transformers are constructed (100 large/small cores)
and the GA population consists 86 chromosomes,
the neural network is applied x 25 = 1250 times
for every GA cycle. The average time that the neural
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Table 4
Average execution of the genetic algorithm for different value® of
Number of parents  Cost/GA cycle  Average iterations  Total cost
Q) (msec) (sec)
10% 295 344 101.48
20% 381 142 54.02
30% 498 77 38.35
40% 604 71 42.88
50% 700 67 46.90
60% 820 64 52.48
Table 5
Average execution of the genetic algorithm for different mutation
probabilities
Mutation rate  Cost/GA cycle  Average iterations  Total cost
(msec) (sec)
1% 396 803 317.98
2% 446 476 212.30
4% 479 86 41.19
6% 517 62 32.05
8% 562 75 42.15
10% 618 95 58.71

network requires to predict the actual losses of all 50

tion batches have been examined, the weight adaptation

transformers and 25 chromosomes has been measurednechanism has been activated only once and the total
to be 358 ms. As aresult, the total cost over the average cost for this weight perturbation wass if m = 8. For

168 GA cycles and 8 runs is 8.02 min. Thus, the total
cost of the proposed neural-genetic algorithm grouping
scheme i41.58 4+ 8.02 = 19.6 min.

In this cost, it should be added the time that the
network requires to adapt its weights (network weight
adaptation). However, this is performed only in case
that the network prediction accuracy is considered
poor. In our experiments, where 30 different produc-

the aboveresults, a P-H(350 MHz) PC has been used
with a C implementation of the proposed neural-genetic
grouping scheme.

It should be mentioned that the execution time of the
proposed algorithm is small compared to other times
involved in the transformer construction process. For
example, only the annealing of the individual cores
takes about 11.5 h to be completed. Furthermore, the
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Fig. 11. Evaluation of the genetic algorithm for different production conditions: (a) production batch of 50 transformers, 100 kVA, 50 Hz of the
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Fig. 12. Iron loss distribution of 50 transformers, 160 kVA (second production condition) using the quality class method as grouping process.

proposed scheme can be applied “in parallel” with the method, both used in the current practice for a produc-
transformer construction. For example, it can be con- tion batch of 50 transformers of 160 kVA.

ducted, while the individual core-department produces Initially, the 100 small and 100 large individual cores
the cores of the following batch and the transformer- (producing 50 transformers) have been grouped using
department constructs the transformers of the previous the quality class method (see Section 2), and the dis-

batch. tribution of the transformer iron losses is depicted in
Fig. 12. In this experiment, the desired (guaranteed)
6.4. Iron loss reduction losses, which are related iy, are 315 W, while the de-

signed losses are 296 W, (i.e. about 6% lower than the
In this subsection, the proposed neural network- guaranteed losses). Similarly, in Fig. 13 the distribu-
genetic algorithm scheme is compared with the min- tion of iron losses is depicted if the grouping method of
imal deviation grouping process and the quality class the minimal deviation (presented in [8]) is used for the



52 N.D. Doulamis et al. / A synergetic neural network-genetic scheme for optimal transformer construction

4 ' e
i
: iz + BN
0 -
] 1 "
E a4 ak
£ 5 1544
= I—:!‘_ T -
i 4 A (e —
£ : ] b
: - W
il :
I
24 — i : S 1
1 |1 | 2
0 E— 5 L | | | . i
181 15 s 104 5142 M1 40 w0
:ﬁl.ll'hl‘!m Mem - = aprieed - r"‘ﬂ.g: PO

Fig. 13. Iron loss distribution of 50 transformers, 160 kVA (second production condition) using the minimal deviation method as grouping
process.

12 B E =4
5 |1
n u '
] | Hrby
i1
|
B i
i CIE e
E |
LR | —
E | L
T f | [y
i |
g |l 1]+
111
2 . 110! =
2 111 T‘
8 |
i I
1 - —l......uh
=0 .1 e B K N ] A6 3 1310 3157 =0
Do L B [0 Mem Oueranteed: —=- Design: =

Fig. 14. Iron loss distribution of 50 transformers, 160 kVA (second production condition) using the proposed neural network-genetic algorithm
scheme.

core arrangement. In this experiment, the same guar- designed ones), while a loss fluctuation of 48.5 W is
anteed losses are used, while the designed iron lossesencountered. On the contrary, in Fig. 13, the average
are 4.8% lower the guaranteed ones, since itis expectedlosses are 310.6 W, (i.e. 3.53% higher than the designed
that this method provides better results than the quality losses), while the loss fluctuation has been restricted to
class approach. As is observed, in Fig. 12, the aver- 39.4 W.

age losses are 307.31 W, (i.e. 3.82% higher than the  Finally, Figure 14 presents the iron loss distribution
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when the proposed neural network-genetic algorithm
scheme is used for transformer construction. In this

case, a much smaller safety margin has been selected

and the designed losses are 311 W, (i.e. only 1.3%

lower than the guaranteed ones). However, as can be

seen from Fig. 14, the average losses are very close
to the designed ones (313.15 W or 0.69% higher than
the designed losses), while the smallest loss fluctuation
is encountered (23.6 W). Furthermore, the maximum
(minimum) losses in this case is lower (higher) than
those obtained from the other two cases.

Usually, transformers, whose iron losses are about
10% higher than the guaranteed losses (in our case
346 W), are considered as unacceptable by the cus-
tomers [3,15]. Consequently, as depicted in Figs 12—
14, all grouping methods yield transformers of accept-
able quality. However, in the proposed neural-genetic
scheme, the width of loss distribution was narrower
than the other two grouping methods. Thus, it is less
probable to generate transformers whose iron losses vi
olates the upper limit of 346 W. Furthermore, the pro-
posed scheme also yields a significant reduction of the
production cost. This is due to the fact that smaller
safety margin is used in this case which saves mag-
netic material. The latter also leads to transformers of
smaller dimensions and further results in a reduction
of the weight of the material of the windings (copper),
insulating materials and transformer oil or equivalently
to an overall reduction of the required cost. The reduc-
tion of the material cost is presented in Fig. 15 in case
of 50 transformers of 50 kVA (first condition). In this
figure, all costs have been depicted with respect to the
cost of the quality class method, the cost of which is
assumed to be 100.

7. Conclusion

In this paper, a synergetic neural network and ge-
netic algorithm scheme has been proposed to reduce
transformer iron losses by exploiting information de-
rived from both the design and the transformer con-
struction phase. More specifically, for a given number
of small and large individual cores, our target is to es-
timate the optimal core arrangement so that transform-
ers of minimal iron losses are assembled. This is ac-
complished by minimizing a cost function, which ex-
presses the aggregate iron losses over all possible con-
structed transformers, using an evolutionary program-
ming scheme. Since, however, the actual iron losses
of a three-transformer are in fact unknown before the
transformer construction, a neural network architecture
is adopted in this paper to provide an accurate estimate
of the transformer losses prior to their assembly. Sev-
eral actual core measurements, transformer design pa-
rameters along with the way of core arrangement are
used as inputs to the network. Furthermore, the predic-
tion accuracy of the neural network model is monitored
after the transformer construction (evaluation phase).
In case that a poor prediction accuracy is encountered,
a weight adaptation mechanism is activated to estimate
new network weights taking into account both the cur-
rent and the previous network knowledge.

The proposed scheme has been applied in our indus-
trial environment and has been compared with the cur-
rent grouping techniques as they are discussed in Sec-
tion 2. In particular, it has been observed that the neu-
ral network-genetic algorithm approach yields a signif-
icant reduction between the deviation of the designed
and the actual iron losses. With such a reduction, the
transformers can be designed with a smaller safety mar-
gin, which saves magnetic material and reduces the
total production cost.
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Letus define byv; 5, w;  the(p+1) x 1 vectors con-
taining all network weights and biases, which connect
the ith hidden neuron to the input layer before and af-
ter the weight adaptation respectively. Then, matrices
W,, W; can be formed as follows

Wy =[w1,q W24 -.. we and

(A1)

Wb = [wLb w2p - w“,]

similarly to the matrixi¥ of Section 3. Let us also
define bywvy, v, thel x 1 vectors which contain the
network weights connecting thi#gh hidden neuron to
the output neuron before and after the weight adaptation
respectively. Similarlyd,, 6, correspond to the biases
of the output neuron. Since Eg. (10) is valid for all

network weights, it can be derived that
Wy =Wy + Aw, vq = vp + Av,
(A2)
0, =0, + A0

whereAW, Av, Af are smallincrements of the respec-
tive network weights.
Thus, Eq. (6) can be written as for a given transformer
Zi
Uq (2(2:))
(A3)
=f (W) a(z) + AW - 2(2))

where subscripb anda refer to before and after the
weight adaptation respectively.

Application of a first order Taylor series expansion
to Eq. (A3) yields to

Uq(2(2))
=f (WbT cx(z) + Q- AWT . :c(zz))

where( is the gradient off (-) and can be expressed
by the following diagonal matrix,

(A4)

Q = diag{d1,4(x(2:)), - - -, dup((2i))} (A5)
where
Sib(w(2i)) (A6)

= wip((2)) - [1 — uip(2(2:))]

indicate the gradient of the hidden neuron output, as-
suming that the activation function of the hidden neu-
rons is the sigmoid.

Thus, Eg. (11b) can be written as for a given trans-
formerz;
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S5~ g (2(22))
=0 ug(x(z)) + AvT - ug(z(2:))
+0, + A6

(A7)

Combining, Egs (A7) and (A4), and ignoring the
second order terms we can find that

52 — ol up(x(z)) — Op

=of -Q-AWT . x(z) (A8)
+AuT uy(z(2:)) + Af
Equation (A8) can be rewritten as
b(z) = a(z)’ - Aw (A9)
where
b(z:) = 82, — vy - up(@(zi)) — O (A10)

is the prediction error before weight adaptation, while
vectora(z;) is produced by reordering the right term of
Eq. (A8) for all network weights. In the previous equa-

tions, we have added the dependence on the transformer

Zi
a(zi)T -Aw = vbT Q- AWT. x(2;)

(A11)
T up(2(2:)) + AB

+Av

Equation (A11) is a linear equation with respect to
the weights incremenfAw and vectora(z;) can be
estimated by simply identifying the terms of the right
and left hand of Eq. (A10). In particular,

a(z)[ved{r - (z)T Juy(x(2)) 1) (A12)
with r = o - Q and vedr - z(z;)” } denoting a vector
formed by stacking up all rows of matrix- z(z;)7.

Equation A(8) for all transformers; can be written

as follows

b=A-Aw (A13)
where

b= [b(z1)b(22)...b(zm)]" (A14)
and

AT = [a(z1)a(2z2) . .. a(zm)] (A15)
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Appendix B

Let us first defing; the difference between the target
output and the network output for thigh element of
the training sef” (old information) in case that the old
weights are used.

gi = (SZ — Yuwy (m(tt))) (Bl)
Let us also recall that
i(t;) = wip(x(t;)) - (1 —wip(z(t;))) (B2)

is the derivative of the ith hidden neuron output when
the transformet; is fed as input to the network using
the old weightsywy.

Differentiating Eq. (11a) with respect to the network
weightsw; ., we have

0D;
5‘w]-,k

(1]
(2]

= —gi ;- O (x(t)) - 2k (ts) (B3)
wherex(t;) is the kth element of the feature vector

x(t;) of the transformet;. We recall thatD; is the 3]
squared error of the ith element @f, that isD; = [4]
(S = Yy (:c(zf,-)))2 while w; ;. refers to the network
weight that connects thih hidden neuron with thith

input element. Thev; .11 is the bias of thgth hidden 5]
neuron and thus in this casg1(t;) = 1 for all ¢;.
Differentiating Eq. (11a) with respect to the network [6]
weightsvy, andé we find that

0D;
L — g, - X [7]
or gi - ur(z(t:)) (B4a)
oD,
oo, 9 (B4b) 8]

Consequently, the sensitivity of the errby; to all
network weights can be expressed as

oD, oD, [9]
AD; =S —“Awjp + LA
Jzk: aw]k wJ,k g avk ,Uk
oD, (B5)
+ 892 A (10]
[11]

Therefore, for all elements id’. That is for all
i =2,..., L the previous equation can be written in a
matrix form

[12]
AD =J-Aw (B6)
where
(13]
AD = [AD; ADy; ADf]" (B7)
(14]

J is the Jacobian matrix given by

The effect of perturbatiomw in

1
min§AwT I T Aw

.0Dy 9Dy 9Dy
aw'wk C')’Uk, 6(1)
. 9Dy .. 9D . 9D,
aw'wk C')’Uk, 6(1)
J= i (B8)
. aDL ... aDL .. aDL
Owj vy o]0

Eqg. (11a) can

L
be modeled byz AD? [4]. Thus, minimization of

=1
Eq. (11a) is equivalent to minimization of

(B9)
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