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Abstract: In this paper, a combined neural network and an evolutionary programming scheme is proposed to improve the
quality of wound core distribution transformers in an industrial environment by exploiting information derived from both the
construction and transformer design phase. In particular, the neural network architecture is responsible for predicting transformer
iron losses prior to their assembly, based on several actual core measurements, transformer design parameters and the specific
core assembling. A genetic algorithm is applied to estimate the optimal core arrangement, (i.e. the way of core assembling)
that yields a set of three-phase transformers of minimal iron losses. The minimization is performed by exploiting information
derived from the neural network model resulting in a synergetic neural network-genetic algorithm scheme. After the transformer
construction, the prediction accuracy of the neural network model is evaluated. If accuracy is poor, a weight adaptation algorithm
is applied to improve the prediction performance. For the weight updating, both the current and the previous network knowledge
are taken into account. Application of the proposed neural network-genetic algorithm scheme to our industrial environment
indicates a significant reduction in the variation between the actual and the designed transformer iron losses. This further leads
to a reduction of the production cost since a smaller safety margin can be used for the transformer design.

1. Introduction

Construction of three-phase distribution transform-
ers of high quality at a minimum possible cost is an
important key for any transformer manufacturing in-
dustry to face today’s market competition [28]. As one
measure of transformer quality, the iron losses (core
losses) are used. In particular, the higher the trans-
former quality is, the less the transformer losses be-
come [5,20]. Usually, the electric power suppliers, (i.e.
the customers), determine the transformer quality by
specifying an upper iron loss limit. In case that the
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transformer iron losses violate this limit, the manufac-
turer is forced to pay loss penalties. This, however,
apart from reducing the manufacturer’s profit, it also
ruins the good reputation of the industry. In order to
satisfy the customers’ requirements, the transformers
are first designed and several parameters are selected so
that the transformer iron losses are equal to or slightly
smaller than those specified by the customers (guaran-
teed losses).

Core losses consist of eddy current losses and hys-
teresis losses [1]. For a given volume of core, the eddy
current losses are nearly proportional to the square of
the product of power frequency, flux density and lami-
nation thickness. Regarding the hysteresis losses, they
are associated with the magnetization and demagneti-
zation cycle of the core [22]. Thus, eddy current losses
can be reduced using, for example, thin laminations of
high-resistivity material, while reduction of hysteresis

ISSN 1069-2509/02/$8.00 2002 – IOS Press. All rights reserved



38 N.D. Doulamis et al. / A synergetic neural network-genetic scheme for optimal transformer construction

losses is achieved using a magnetic material of smaller
hysteresis loop [22]. Although, in theory, this is a
sufficient condition to meet customer’s requirements,
in practice, additional parameters, such as the quality
of cores that assemble the transformer, are involved
during the construction process, which deviate the ac-
tual losses from the designed ones. Consequently, it is
possible for the transformer iron losses to exceed the
guaranteed losses.

Most works, reported in the literature,have been con-
centrated on the estimation of transformer losses in a
theoretical basis. These techniques are mainly focused
on the analysis of the core electromagnetic field. In
particular, in [18] the 3D-leakage fields are estimated,
while in [11] 3D magnetic-field calculations are used
to evaluate the performance of several parameters on
power transformers. Other approaches are based on
the method of finite elements either to compute the
core loss currents [6] or to estimate the loss distribu-
tion in case of stacked transformers [21]. Apart from
the above mentioned works, which are mainly based
on the arithmetic analysis of the core electromagnetic
field, modeling of three-phase transformers has been
also proposed based on the analysis of their magnetic
circuits [26].

Other approaches used to improve the calculation
accuracy of transformer iron losses are based on exper-
imental observations. In particular, in [24,27] linear or
simple non-linear models have been proposed to relate
transformer iron losses with electromagnetic and geo-
metric properties. Furthermore, in [14] estimation of
transformer losses is performed based on experimental
curves. However, these approaches present satisfactory
performance only for data (transformers) on which the
model parameters have been estimated. The model ac-
curacy deteriorates in case of data that are not included
in the “training set”. This is due to the fact that there is
not a simple and analytical relationship expressing the
impact of the aforementioned parameters on the trans-
former performance, as the previous models assume.

Regardless of the method adopted, theoretical or ex-
perimental, and despite the model accuracy, in all the
aforementioned approaches the reduction of iron losses
is achieved through better transformer design. For this
reason, all the above-mentioned models provide one
prediction value for the iron losses of all the transform-
ers of the same production batch. Unfortunately, this is
never verified in an actual industrial environment due
to constructional defects. More specifically, it has been
found that the maximum divergence between the theo-
retical and the actual iron losses could be up to± 10%
for a given production batch [7,9].

In this paper, the improvement of transformer qual-
ity is addressed through an original point of view; the
improvement is achieved during the transformer pro-
duction phase and not during the transformer design
phase. Our work is concentrated on wound core distri-
bution transformers. In particular, the technique used
aims at estimating the optimal core arrangement for a
given design so that transformers of best quality (min-
imal losses) are constructed. In fact, the proposed
method compensates the effect of constructional de-
fects on transformer iron losses by appropriately com-
bining the individual cores. Such an approach reduces
the deviation between the actual and the theoretical
iron losses and thus yields losses closer to the designed
ones. For this reason, transformers can be designed
using a higher safety margin since it is less possible for
their iron losses to exceed the guaranteed losses, which
leads to a reduction of the total production cost.

The optimal core arrangement is estimated in this pa-
per through a combined neural network-genetic algo-
rithm scheme. The neural network architecture is used
to accurately estimate the transformer losses, while the
genetic algorithm exploits the neural network output
to determine that core arrangement of individual cores,
which produces a set of three-phase transformers of op-
timal quality, (i.e. of minimal losses). Finally, the pre-
diction accuracy of the neural network model is eval-
uated, after the transformer construction. In case that
the prediction accuracy is poor, a weight adaptation is
activated to improve the network performance. For the
weight updating, a novel algorithm is proposed in this
paper so that (i) the network output is approximately
equal to the current iron losses and (ii) a minimal degra-
dation over the previous network knowledge is pro-
vided. The proposed scheme has been implemented
to a transformer manufacturing industry for increasing
the quality of the produced transformers.

This paper is organized as follows: Section 2
presents the problem formulation and describes the
techniques used in the current practice for transformer
design as well as core assembling. The neural network
architecture used to predict transformer iron losses is
presented in Section 3, while Section 4 explains the
weight adaptation mechanism. The genetic algorithm-
based grouping method is discussed in Section 5 to
estimate the optimal core arrangement that generates
transformers of minimal losses. Application of the pro-
posed neural network-genetic algorithm scheme to our
industrial environment is described in Section 6, while
Section 7 concludes the paper.
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Fig. 1. A graphical representation of a wound core transformer.

2. Problem description

A three-phase wound core distribution transformer
consists of two small and two large individual cores.
The difference between small and large cores is the
width. In general, the width of a small core is the
half of the width of a large core. The order that these
four cores are arranged to construct a three-phase trans-
former is shown in Fig. 1. Particularly, the order is; a
small core, followed by two large cores, followed by
another small core [2]. Given a fixed number of pos-
sible small and large cores, we can determine the total
number of the transformers that may be constructed.
In particular, given2 ∗M small cores and2 ∗M large
cores, we can construct exactlyM different transform-
ers at the same time. Let us denote asti theith trans-
former among allM possible (i = 1, 2, . . . ,M ). Let
us also denote assi, i = 1, 2, . . . , 2 ∗ M , the ith
small individual core, while asli, i = 1, 2, . . . , 2 ∗M ,
the ith large core. Assuming that the transformert i,
consists of thesp and thesq small core (withp � q,
p, q ∈ {1, 2, . . . ,M}) and thelm and theln large core
(with m �= n, n,m ∈ {1, 2, . . . ,M}), can be written
in a vector form as follows

ti = [splmlnsq]T (1)

where in the previous equation we have taken into ac-
count the pre-determined core arrangement as depicted
in Fig. 1.

2.1. Transformer design

The transformers are designed so that the theoretical
iron losses, sayP t

ti
, satisfy the following equation,

P t
ti
≈ (1 − γ)P0 (2)

whereP0 are the iron losses specified by the customers,
while 0 < γ < 1 a safety margin. A typical value for
safety marginγ is 0.05. It should be mentioned that
all transformers of the same design present the same
theoretical iron losses.

Based on Eq. (2) and using the transformer geometry
and the typical loss curve, the theoretical iron losses
of the individual cores as well as the losses of the as-
sembled transformer are estimated [9,12]. However,
the actual core losses deviate from the theoretical ones
due to constructional defects, producing cores of lower
or higher quality than the designed one. Therefore if
a random core arrangement is adopted, it is probable
to assemble four low-quality cores together, generating
transformers of low quality. To avoid this, we use a
core grouping process, so that cores of low-quality are
combined with cores of high-quality to produce three-
phase transformers of iron losses close to the designed
ones.

2.2. The current core grouping methods

Two different approaches are used in the current
practice to perform the core grouping. In the first ap-
proach, the cores are classified into “quality classes”
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according to the deviation of their actual iron losses
from the theoretical ones (quality class method). For
example, let us assume that three quality classes are
available, named as A, B and C respectively. The class
A contains all small or large cores whose the quality
(iron losses) is around the designed one. On the con-
trary, cores of lower quality than the cores of the class A
are classified into class B, while cores of higher quality
into class C. Then, a transformer is constructed by as-
sembling either a) one small core and one large core of
class B and one small core and one large core of class C
or b) four cores of class A.

However, such an approach assigns the same quality
grades to all cores belonging to the same quality class.
For this reason, another groupingprocess is also used in
the current practice based on the minimal deviation of
the core losses (minimal deviation method) [8]. In both
approaches as a measure of the transformer quality the
sum of the losses of the four individual cores is used,
that is

F a
ti

= P a
sp

+ P a
sq

+ P a
lm + P a

ln and (3a)

F t
ti

= P t
sp

+ P t
sq

+ P t
lm + P t

ln
(3b)

= 2 ∗ (P t
s + P t

l )

where Eq. (3a) refers to the actual losses, while Eq. (3b)
to the theoretical ones. In Eq. (3),P a

sp
andP a

sq
(P t

sp

andP t
sq

) denotes the actual (theoretical) losses of the
small coressp andsq of transformerti [see Eq. (1)].
Similarly, P a

lm
andP a

ln
(P t

lm
andPln ) are the actual

(theoretical) losses of the large coreslm of ti.
However, the transformer losses, both the actual and

the theoretical ones,P a
ti

andP t
ti

respectively, diverge
from f a

ti
and F t

ti
, since additional losses in general

appear during the core assembling [2]. In particular,
P a

ti
> F a

ti
, andP t

ti
> F t

ti
. For example, reordering

the two small or the two large cores of a transformer,
results in different actual iron losses, (i.e.P a

ti
), though

the average losses of the four cores, (i.e.F a
ti

), remain
the same. For this reason, the current grouping methods
do not provide the optimal arrangement of all available
2 ∗M small and2 ∗M large cores so that transformers
of minimal losses are constructed. To overcome the
aforementioned difficulties, a novel synergetic neural
network-genetic algorithm scheme is adopted in this
paper.

2.3. The proposed scheme

The block diagram of the proposed scheme is il-
lustrated in Fig. 2. Initially, the transformers are de-
signed to satisfy, at least theoretically, the customers’
requirements (with perhaps a safety margin) and then,
the individual cores are constructed and several mea-
surements are taken for each core to determine its qual-
ity. These measurements and several transformer de-
sign parameters along with the specified core arrange-
ment are fed as inputs in a neural network structure,
responsible for predicting the actual transformer losses.
In the following, the optimal core arrangement is esti-
mated, which produces transformers of the best qual-
ity using a genetic algorithm grouping scheme. After
the transformer construction, the prediction accuracy
of the network model is monitored (evaluation phase).
If the prediction accuracy is poor, a weight adaptation
algorithm is activated to estimate new network weights
which are then used to predict future samples (trans-
formers) of the process. Otherwise, the same weights
are used as shown in Fig. 2.

3. Transformer iron loss modeling

The neural network architecture used for predicting
the transformer iron losses is described in this section.
Let us gather in the vectorx(ti) all network features
of transformerti. Let us also denote asyw(x(ti))
the network output in case thatx(ti) is the network
input. The subscriptw indicates the dependence of
the network output on its weights and biases. In our
case, we consider that the network approximates the
actual specific iron losses of the transformerti, (i.e. the
normalized losses per weight unit). Particularly, it is
held that

Sa
ti

= P a
ti
/Kti (4)

whereSa
ti

corresponds to the actual specific iron losses
of the transformerti, andKti to its actual core weight.

The neural network models the non-linear relation-
ship, sayg(·), between the input featuresx(ti) and the
specific iron lossesSa

ti
,

Sa
ti

= g(x(ti)) (5)

However, under different production conditions, (i.e.
different thickness, grade and/or supplier of the mag-
netic material), different non-linear relationship exists.
This is due to the fact that different type of magnetic
material has a different effect on the transformer iron
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Fig. 2. Block diagram of the proposed architecture.

losses, while different suppliers usually follow a spe-
cific technology for producing the magnetic material.
Assuming thatL different production conditions are
available, then,L different neural networks are used,
each of which corresponds to a specific condition. Se-
lection of the most appropriate condition is performed
during the design phase, where both the type of the
magnetic material and the respective supplier are de-

termined. In the following analysis, the iron loss mod-
eling is performed for a given production condition,
since similar conclusions can be drawn for the other
conditions too.

A feedforward neural network architecture is adopted
in this paper to approximate the unknown function
g(·) [13]. Figure 3 illustrates such a network,consisting
of one hidden layer ofl neurons, one output neuron and



42 N.D. Doulamis et al. / A synergetic neural network-genetic scheme for optimal transformer construction

x ( t i)= [ x 1(t i)  x 2( t i) ...x p( t i)   1]T

x 1(t i)

f( .)

v 1

v l

v 2

1
f( .)

f( .)

v = [v 1  v 2  ...v l]
T

w i= [w i ,1  w i,2  ...w i,p  w i,p+ 1 ] T

w 1,1

w 2,1
w l ,1

w 1,2
w 2,2

w l ,2

w 1, p

w l ,p

w 2, p

w l ,p + 1

w 2, p + 1

w 1, p + 1

y w (x ( t i))

w = [w 1  w 2  ...w l  v ] TT T T T

x 2 (t i)

x p(t i)

Fig. 3. The feedforward neural network used to predict transformer losses.

p input elements. Let us denote bywi,k, i = 1, . . . , l,
k = 1, . . . , p the weights, which connect theith hidden
neuron to thekth input element and aswi,p+1 the bias
of theith hidden neuron. These weights and biases are
also illustrated in Fig. 3 for clarity. Then, we form the
(p+1)×1 vectorswi[wi,1 . . . wi,p+1]T , i = 1, 2, . . . , l
containing all the weights and biases of theith hidden
neuron. In this case, the output of all hidden neurons
can be written in a matrix form as follows

u(x(ti)) =



u1(x(ti))

...
ul(x(ti))


 =



f(wT

1 · x(ti))
...

f(wT
l · x(ti))




(6)

= f(WT · x(ti))

whereu(x(ti)) = [u1(x(ti)) . . . ul(x(ti))]T is a vec-
tor containing the outputs of all hidden neurons,
uk(x(ti)), k = 1, . . . , l, in case thatx(ti) is the net-
work input. In Eq. (6),W denotes a(p+1)× lmatrix,
the columns of which correspond to the weight vector
wi that isW = [w1w2 . . . wl], while f(·) is a vector-
valued function, the elements of which correspond to
the activation functionf(·), of the hidden neurons. In
our case, the sigmoid function has been selected as the
activation function of all hidden neurons of the network.

Let us also define byv = [v1v2 . . . vl]T anl× 1 vec-
tor, which contains the network weights, sayvi, con-
necting the ith hidden neuron to the output neuron. Let
us also define asθ the bias of the output neuron. Then,
vectorw = [wT

1 w
T
2 . . . wT

l v
T θ]T represents all net-

work weights and biases. The network output, which
provides a non-linear approximation, sayĝ(·) of func-
tion g(·) and thus an estimate,̂Sa

ti
of the specific iron

lossesSa
ti

, is given by the following equation

yw(x(ti)) ≡ Ŝa
ti

= vT · u(x(ti)) + θ (7)

where, in this case, a linear activation function has
been used for the output neuron, since the network
output approximates a continuous valued signal, (i.e.
the specific iron losses of a transformer).

A training set ofN samples (transformers), sayT , is
used to estimate the network weightsw. The training
set,T =

{(
x(t1), Sa

t1

)
, . . . ,

(
x(tN ), Sa

tN

)}
, contains

the actual specific iron losses ofN transformers, which
have been constructed under the same production con-
dition, along with the respective network features. The
network is trained to minimize the mean squared value
of the error over all samples of setT

C =
1
2

N∑
i=1

{
Sa

ti
− yw)(x(ti))

}2
(8)

In our approach, a second order method has been
selected to train the network based on a modification
of the Marquardt-Levenberg algorithm, as presented
in [17]. This algorithm has been selected due to its effi-
ciency and fast convergence. Furthermore, a cross val-
idation method has been incorporated in the proposed
scheme to improve the generalization performance of
the network [13].
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Table 1
Features selected by the PCA, which are used as inputs to the neural
network architecture

Symbol Expression

x1 B
x2 (Usp + Ulm + Uln + Usq )/4
x3 (Vsp + Vlm + Vln + Vsq )/4
x4 Ka

ti
/Kt

ti

x5 F a
ti

/F t
ti

x6

(
Sa

sp
+ Sa

lm

)
/
(
St

sp
+ St

lm

)
x7

(
Sa

lm
+ Sa

ln

)
/
(
St

lm
+ St

ln

)
x8

(
Sa

ln
+ Sa

sq

)
/
(
St

ln
+ St

sq

)
A principal component analysis (PCA) has been

also included to appropriately select the input features.
Since most of the measurements obtained are highly
correlated, it is useful for improving the network train-
ing and generalization performance to discard the re-
dundant information. Principal component analysis
eliminates those input components, which contribute
the least to the network output, while retaining the most
important (principal) ones. To implement the PCA,
a neural network architecture similar to that proposed
in [25] has been adopted in this paper. The num-
ber of the principal components extracted is estimated
through the amount of energy that those components
can retain. In particular, in our case, the components,
which correspond to 85% of the total energy (8 in our
case), are selected as the most significant.

In Table 1, we summarize the features, which are
closer to that specified by the PCA to provide a phys-
ical explanation of the most important features used.
More specifically, featurex1 is the rated magnetic in-
duction, which is also used in order to calculate iron
losses at the design phase by using the loss curve (de-
sign parameters). This is also denoted asB in this ta-
ble. Featuresx2 andx3 express the average specific
losses (W/Kg at 15000 Gauss, and 17000 Gauss, re-
spectively) of magnetic material of the four individual
cores used for transformer construction. These param-
eters are also denoted asU andV respectively in the
table. The subscripts of these variables refer to one
of the four cores that assemble the transformert i sim-
ilarly to Eq. (1). For example,Usp denotes average
specific losses of magnetic material at 1500 Gauss for
the left small core (sp), whileUln refers to the second
(right) large core (ln). Featurex4 is the ratio of actual
(Ka

ti
) over theoretical weight(K t

ti
) of the four individ-

ual cores that assembleti. Featurex5 is equal to the
ratio of actual(F a

ti
) over theoretical(F t

ti
) iron losses

of the four individual cores ofti. The significance of
the featurex5 is that the iron losses of the three-phase

transformer depend on the iron losses of its individual
cores. In the industrial environment considered, it is
observed that the arrangement of cores influences the
assembled transformer core losses. This is reflected
through the selection of featuresx6, x7, andx8 (see
Table 1). In all cases, the notation for the four cores is
similar to Eq. (1). For instance,Sa

sp
refers to the actual

specific iron loss of thesp small core (i.e. the first one),
while St

sp
to the theoretical ones.

4. Network weight adaptation

The weight adaptation training algorithm modifies
the network weights so that the network output ap-
propriately responses to the new data, while simulta-
neously providing a minimal degradation over the old
information [4]. Particularly, let us denote bywb the
network weights before the weight adaptation. Let us
assume that these weights have been estimated using
data of setT . Let us also assume that during the eval-
uation phase, m transformers have been examined and
that their actual specific iron losses significantly devi-
ate from the predicted ones. These transformers are de-
noted aszi, i = 1, . . . ,m, where vectorz has the same
form as vectort (Eq. (1)). In this case, a new train-
ing set,Tc =

{(
x(z1), Sa

z1

)
, . . . ,

(
x(zm), Sa

zm

)}
,, is

created consisting of pairs of the featuresx(z i) for the
transformerszi along with the respective actual specific
iron lossesSa

zi
. Then, the new network weights, say

wa, are estimated by minimizing the following equa-
tion,

wa = arg min
w

1
2

N∑
i=1

(
yw(ti) − Sa

ti

)2

(9a)

=
1
2

N∑
i=1

Di

subject to

ywa(x(zi)) ≈ Sa
zi

for i = 1, . . . ,m (9b)

whereDi =
(
yw(ti) − Sa

ti

)2
. Equation (9a) indicates

that the network weights are adapted in such a way that
a minimal degradation over the existing old informa-
tion, as that expressed by the setT , is accomplished.
The minimization constraint [Eq. (9b)] means that the
network output, after the weight adaptation, is approx-
imately equal to the actual specific iron losses for all
transformerszi of Tc.

Assuming that a small weight perturbation is suffi-
cient to perform the weight modification, we can relate
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the weights before and after the adaptation as follows

wa = wb + ∆w (10)

where∆w represents small increments of the network
weights.

The effect of∆w in Eq. (9) can be expressed by
estimating the sensitivity of errorsDi with respect to
the network weights and by linearizing Eq. (9b) using a
first order Taylor series expansion. In this case, Eq. (9)
yields to the following constraint minimization

min
1
2
∆wT · JT · J · ∆w (11a)

subject to

b = A · ∆w (11b)

where matrixJ corresponds to the Jacobian matrix of
the errorsDi, while vectorband matrixAare expressed
in terms of the previous weights,wb. More details about
the form ofJ ,A andb can be found in the appendices A
and B.

The gradient projection method is used in our case
to minimize Eq. (11a) subject to Eq. (11b) [19]. In
particular, the algorithm starts from an initial feasible
point [i.e. a point which satisfies Eq. (11b)], say∆w(0)
and then the weight increments are updated as follows

∆w(n + 1) = ∆w(n) + γ(n)h(n) (12)

where γ(n) is a scalar that determines the conver-
gence rate, whileh(n) indicates the negative gradient
of Eq. (11a) onto the subspace that is tangent to the
surface defined by the constraint at thenth iteration of
the algorithm,

h(n) = −P · J · ∆w(n) (13)

with P = I −AT (A · AT )−1A (14)

As initial feasible point∆w(0), the minimal distance
from the origin to the surfaceb−A·∆w = 0 is selected,
given by

∆w(0) = AT · (A · AT )−1 · b (15)

After the weight adaptation, the old information, (i.e.
the training setT ), is updated by inserting in it all
pairs of setTc. However, in this case, the size of
T continuously increases, since more and more pairs
are included. For a more efficient implementation, the
number of pairs ofT can be considered constant and
thus each time new pairs get into the setT , the oldest
ones are removed from it.

5. Optimal core arrangement

The aforementionedneural network architecture pre-
dicts the transformer iron losses, for a given produc-
tion condition, based on several core measurements,
transformer design parameters and taking into account
a given core arrangement and core assembling. This
means that for different cores and/or different core ar-
rangement, the network provides different predicted
iron losses. Exploiting this information, we can esti-
mate, for the given2 ∗M small and2 ∗M large avail-
able cores, that core arrangement which producesM
transformers of the highest quality (minimum losses).

Let us denote asc a vector containing all theM
possible constructed transformers

c = vec{T T} (16a)

with

T = [t1t2 . . . tM ] (16b)

where vec{T } presents a vector formed by stacking up
all rows of matrixT .

As observed from Eq. (16a), the dimension ofc is
4M × 1 since each transformerti is represented by
a 4 × 1 vector as Eq. (1) indicates (four individual
cores). Vectorc provides a possible arrangement (com-
bination) of all small and large cores, which construct
theM three-phase transformers. Therefore, different
elements ofc correspond to different arrangement of
individual cores. Based on the above definition, it is
clear that searching for a set ofM transformers of the
highest quality is equivalent to searching for a vectorc
that minimizes the following equation

copt =arg min
c

E(c) =arg min
c

{
M∑
i=1

P a
ti

}
(17)

wherecopt is the vector corresponding to the optimal
core arrangement.

In Eq. (17), the actual transformer iron losses,P a
ti

,
are involved, which are in fact, unknown before the
transformer construction. For this reason, for the min-
imization of Eq. (17), an approximation ofP a

ti
is used

based on the aforementionedneural network model. As
mentioned in Section 3, the neural network estimates
the specific iron losses,Sa

ti
instead ofP a

ti
. Conse-

quently, an estimate of the actual losses,P a
ti

, is obtained
by multiplying the network output (specific losses) by
the actual weights of the four cores that assemble the
transformerti. Furthermore, to avoid the risk of vio-
lating the customers’ requirements, a very large value
is assigned to the predicted losses that lead to trans-
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Fig. 4. An example of the genetic algorithm representation.

formers of unacceptable quality, (i.e. their losses are
somehow greater thanP0), with perhaps a safety mar-
gin estimated based on the relative prediction error of
the network.

For a typical number of small/large cores, direct
minimization of Eq. (17) is practically infeasible since
the computational complexity for an exhaustive search
is very high. For example, assuming that 100 small
and 100 large individual cores are available, about
5.35*1022 combinations of core arrangements should
be considered! For this reason, the minimization pro-
cess is performed, in the following, using a genetic
algorithm (GA) [23], resulting in synergetic neural
network-genetic algorithm scheme for optimal trans-
former construction.

5.1. Genetic algorithm

In the GA approach, the vectorc is considered as
one chromosome, while its elements, (i.e. the serial
numbers of individual cores), as genetic material of
the respective chromosome. Figure 4 presents an ex-
ample of such representation in case of six large and
six small cores. Initially, a population ofL chro-
mosomes is created, sayP (0) = {c1(0), . . . , cL(0)}
whereci(0), i = 1, . . . , L corresponds to the ith chro-
mosome of the populationP (0). Although, in theory,
the initial population can be randomly selected, fast
convergence is achieved in case that the genetic ma-
terial of the initial chromosomes is of somehow good
quality. For this reason, in our case theL initial chro-
mosomes are selected as possible solutions of the core
grouping method used in the current practice.

The performance of each chromosome, which actu-
ally represents a particular core arrangement, is eval-
uated as the sum of the predicted actual iron losses,
(provided by the neural network model) over all trans-
formers that can be constructed by this particular chro-

mosome (vectorc). Since this measure is inverse pro-
portional to the transformer quality, the fitness function
of the genetic algorithm, which is responsible for mea-
suring the chromosome quality, is given by following
equation.

F (ci(n)) = B − E(ci(n)) (18)

where we recall thatE(ci(n)) denotes the sum of the
predicted iron losses over all transformers constructed
using the core arrangement of the chromosomec i(n).
The constantB in Eq. (18) is selected so that negative
values of the fitness function are avoided.

Based onF (ci(n)) for all chromosomesci(n), i =
1, 2, . . . , L of the current populationP (n), appropri-
ate “parents” are selected so that a fitter chromosome
has a higher chance of survival in next generation.
In particular, in our case, a probability is assigned to
each chromosome, equal toF (ci(n))/

∑L
i=1 F (ci(n))

and thenQ < L chromosomes are randomly selected
based on their assigned probabilities as candidate par-
ents (roulette wheel selection procedure [10]).

A set of new chromosomes (offspring) is then pro-
duced by mating the genetic material of the parents us-
ing a crossover operator, which defines how the genes
should be exchanged to produce the next generation.
Several crossover mechanisms have been reported in
the literature. In our approach, a modification of the
uniform crossover operator [10,23] has been adopted.
This is due to the fact that it is possible for an individual
core to appear more than once in the genetic material of
each new generated chromosome. This means that one
individual core is placed to more than one transformer
or to more than one position of the same transformer,
which corresponds to an unacceptable core arrange-
ment. For this reason, the following modification of the
uniform crossover operator is adopted and explained
using a simple example of six small and six large cores
(Fig. 5). In this example, it is assumed that the two
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Fig. 6. An example of the mutation mechanism used.

parents exchange their genes between the crossover
points 2, 3 and 4. As observed, the genes{10,12,1} of
the 1st parent are exchanged with the genes{8,12,3}
of the 2nd parent. By applying this exchange of genes,
in the 1st chromosome, the genes 8 and 3 appear twice,
while genes 10 and 1 disappear. An equivalent problem
occurs in the 2nd chromosome. For this reason, in the
1st chromosome, the genes{10,1} are one-by-one ex-
changed with genes{8,3} as Fig. 5 depicts. The same
happens for the 2nd chromosome.

The next step of the algorithm is to apply mutation
to the newly created chromosomes, introducing ran-
dom gene variations that are useful for restoring lost
genetic material, or for producing new material that
corresponds to new search areas. In our case, the ge-
netic material of a chromosome is randomly mutated
with a probabilitypm. In particular, for each gene, a
random number is generated uniformly distributed in
the interval [0 1] and if this number is smaller than the
mutation ratepm, then this gene undergoes mutation.
To avoid the appearance of an individual core more than
once in the genetic string after mutation, (i.e. to pre-
serve valid core arrangement), we swap each mutated
gene for other randomly selected of the same category,
(i.e. large or small core). This is illustrated in Fig. 6.
In this figure, we assume that the large core with la-
bel ‘12’, (the third gene) undergoes mutation. Thus, it
is swapped for another randomly selected gene of the
same category, for example the large core with label
‘7’ in our case.

After that, the next populationP (n + 1) is created
by inserting the new chromosomes and deleting the

older ones. Several GA cycles take place by repeating
the procedures of fitness evaluation, parent selection,
crossover and mutation, until the population converges
to an optimal solution.

5.2. Explanation of the GA convergence

As can be seen in the following section of the exper-
imental results, the proposed genetic algorithm scheme
sufficiently estimates the optimal core arrangement so
that transformers of minimal losses (best quality) are
constructed, even in case that a large number of cores
(variables) are involved in the minimization process.
This is due to the fact that the variables (individual
cores) do not take any arbitrary value. Instead, the
cores are designed so that Eq. (2) is satisfied and thus
they present the same theoretical losses. Divergence
from this requirement is due to constructional defects
during the core production phase. Assuming that the
industry follows specified constructional standards, this
divergence is not so large. Consequently, the form of
Eq. (17) is not so complex as is expected from the num-
ber of variables (large/small cores) involved in the pro-
cess. Another issue towards this direction is that in-
dividual cores are usually produced in groups. There-
fore, it is expected that for cores belonging to the same
group to present similar characteristics (losses) since
they undergo almost the same constructional effects.

In addition, as initial population of the genetic algo-
rithm, chromosomes obtained from the current group-
ing method are used. This selection further improves
the GA convergence since the algorithm starts from
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Table 2
The neural network training and configurations details

Production conditions
Neural network (MLP) training and configuration details #1 #2 #3

Total number of measurement sets (MS) 2240 2350 1980
Number of MS of the training set (75% of the total MS) 1680 1762 1485
Number of MS of the validation set (10% of the training set) 168 235 198
Number of MS of the test set (25% of the total MS) 560 588 495
Slope of the sigmoid (activation) function 1 1 1
Number of neurons of the input layer 8 8 8
Number of neurons of the hidden layer 5 6 4
Number of neurons of the output layer 1 1 1

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

0.7 0.9 1.1 1.3 1.5 1.7 1.9

Real Specific Iron Losses

re
di

ct
ed

 S
pe

ci
fi

c 
Ir

on
 L

os
se

s

Perfect Fit

Typical Loss Curve

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

0.7 0.9 1.1 1.3 1.5 1.7 1.9

Real Specific Iron Losses

re
di

ct
ed

 S
pe

ci
fic

 I
ro

n 
L

os
se

s

Perfect Fit

Neural Network Model

(a) (b)

Fig. 7. Prediction performance of transformer specific iron losses for the first production condition, (a) using the typical loss curve (Current
Practice), (b) using the proposed neural network model.

chromosomes of somehow good quality. This selec-
tion also leads to construction of transformers of better
quality (i.e. less losses) than those obtained from the
current grouping method. The GA improves the per-
formance of the initial chromosomes, which represent
the core arrangements of the current grouping.

6. Experimental results

In our industrial environment, three different pro-
duction conditions have been examined. The first cor-
responds to a magnetic steel of grade M3, according to
the USA AISI 1983, thickness of 0.23 mm, while the
supplier of the material is the Supplier A. For the sec-
ond condition, a magnetic steel of grade M4, thickness
of 0.27 mm and the Supplier B are selected. Finally,
in the third condition, the grade is Hi-B, the thickness
0.23 mm and the Supplier A.

6.1. Neural network modeling

A set consisting ofN = 1680 actual industrial mea-
surements is used to train the network in case of the

first production condition. The 10% of the training data
are selected as validation set, while 560 test data have
been used to evaluate the prediction accuracy of the
network. Similar number of data has been also used for
the training, testing, and validation sets of the other two
conditions. The network configurations, which have
been used for predicting the transformer iron losses,
are presented in Table 2 for the three aforementioned
production conditions.

Figures 7(a) and (b) present the Q-Q (Quantile-
Quantile) plots [16] of the specific iron losses, using
the typical loss curve (current practice) and the pro-
posed neural network method respectively, for the first
production condition. According to this method, the
real specific iron losses are plotted versus the predicted
ones and as a result, perfect prediction lies on a line of
45◦ slope. As is observed, the neural network-based
prediction scheme provides, on average, more accurate
results than the typical loss curve method. In particu-
lar, the current method (loss curve) shows a maximum
absolute relative error of 9.9%, while the respective er-
ror of the neural network scheme is 4.8%. As far as
the average error is concerned, the proposed method
yields 1.5% error instead of 2.9% of the current prac-
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Table 3
Comparison of specific iron loss prediction using the typical loss curve method and the neural network model
for three different production conditions

#1 Production condition #2 Production condition #3 Production condition
Typical Neural Typical Neural Typical Neural

loss curve network loss curve network loss curve network

Relative error 2.9 1.5 3.1 1.7 3.3 1.8
Minimum Error (%) −6.1 −4.5 −7.1 −4.9 −7.4 −5.1
Maximum Error (%) 9.9 4.8 10.6 5.5 10.8 5.8

tice. Similar results are also obtained for the other two
productionconditions and these results are summarized
in Table 3.

6.2. Weight adaptation

The weight adaptation algorithm described in Sec-
tion 4 has been applied to our industrial environment
to improve the prediction accuracy of the network in
future production batches. This means that the network
is able to adapt its performance in slight changes of
the production condition. In particular, the network
performance is monitored during the evaluation phase,
and in case that the prediction error exceeds a pre-
determined threshold, for a given production batch, the
weight adaptation algorithm is activated. Figure 8(a)
illustrates the average prediction error for several pro-
duction batches,all consisting of 50 transformers,along
with the specified threshold. In the experiments con-
sidered, this threshold is defined to be 10% higher than
the average prediction error. As is observed, at the
19th production batch the prediction error exceeds this
threshold and the weight adaptation is activated. To
avoid large number of equations [Eq. (11b)], only 10%
(i.e. 5 transformers) of the 19th batch are included in
the setTc, selected using a principal component analy-
sis. The remaining transformers are used as test set in
order to evaluate the network prediction performance.
After the weight updating, the prediction accuracy has
been improved as depicted in Fig. 8(b), where the pre-
diction error for the batches 20 to 30 is shown.

6.3. Genetic algorithm performance

In the following experiments, the genetic algorithm
has been applied to group 100 small and 100 large
cores of the same production batch of 50 transformers,
100 kVA, 50 Hz of the second production condition.

Figure 9 presents the effect of the initial population
selection on the convergence rate of the GA. In this
figure, three different approaches have been examined.
The first is based on a random selection of the ini-

tial populationP (0), the second, on the quality class
method of the current grouping process, while the third,
on the minimal deviation method (see Section 2). For
the quality class methodL possible solutions can be
used as the initial population, while for the minimal
deviation method, theL best core arrangements have
been selected. In all cases, a mutation rate equal to
5% has been used, the population was 25 chromosomes
while at each iteration 30% of the total population (i.e.
8) parents have been adopted. As is observed, the worst
performance appears to be the random selection, while
the minimal deviation method presents the fastest con-
vergence.

The total transformer losses over all 50 exam-
ined transformers versus mutation rate is presented in
Fig. 10(a), for the three different approaches used for
initial population selection. As can be seen, in case
of high mutation rates, the performance of the class
quality and the minimal deviation methods are almost
similar, while the random initial population selection
provides the slowest convergence for all mutation rates.
In this case the numberQ is equal to 30% of the total
population, while 100 GA cycles have been used to
terminate the iteration process. Furthermore, it seems
that in all cases the minimal losses fall in the range
of 4–6% mutation rate. This is due to the fact that
small mutation probability may trap the solution to a
local minimum. Instead, large probability leads to ran-
dom search, which deteriorates the GA performance.
However, the minimal deviation method outperforms
compared to the other two ones.

Figure 10(b) presents the mutation rate versus total
transformer losses for different values ofQ (10%, 30%
and 50% of the total population), in case that the min-
imal deviation method is used as the initial population
selection and for 100 GA cycles. Mutation probabili-
ties around 4–6% provide the best results in this case
too. It can be seen, from this figure, that, as the number
of Q increases, the algorithm reaches the optimal solu-
tion in fewer GA cycles. However, large values ofQ
also increase the cycle computational load, which may
affect the total GA complexity. Table 4 presents the
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Fig. 8. Evolution of average absolute relative error over various production batches of the first production condition, (a) for the first 19 production
batches (before the weight adaptation), (b) for the following 11 production batches (after the weight adaptation).
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Fig. 9. The genetic algorithm convergence for different initial popu-
lation selection mechanisms.

average computational load per GA cycle for different
values ofQ along with the average number of iterations
(cycles) required to achieve total iron loss less than
10900 W. In this case, the results have been obtained
on a P-II 350 MHz PC and a mutation rate equal to 5%
has been used. It can be seen thatQ = 30% of the total
population provides the fastest convergence although it
requires greater number of cycles than otherQ. The ef-
fect of the mutation probability on the average compu-
tational load is also shown in Table 5. The best number
of parents, (i.e.Q = 30%), has been used in this case.
This table indicates the average computational load per
GA cycle, along with the GA cycles required to achieve
a minimum loss less than 10900 W. It is observed that
mutation probability around 6% yields the best results
as far as the computational cost is concerned.

As a result, the values of the GA parameters, which
are involved in the process and optimize the GA conver-

gence, are the minimal deviation grouping method as
the initial population, mutation rate around 6%, num-
ber of parents undergone crossover 30% of the total
population, and constant population size equal to 25
chromosomes. These values are used in the following
results.

Figure 11(a) evaluates the performance of the ge-
netic algorithm by comparing the predicted with the
actual iron losses (measured after the transformer con-
struction) for the same batch of 50 transformers of
100 kVA, 50 Hz of the second production condition.
Similarly, Figure 11(b) evaluates the performance of
the proposed scheme for another batch of 50 transform-
ers of 250 kVA, 50 Hz, second production condition.

The computational complexity of the proposed neu-
ral network-genetic algorithm scheme depends on a)
the cost required for the GA convergence and b) on
the testing time that the neural network takes for pre-
dicting the transformer actual losses for a give core
arrangement. For the GA, 8 different runs have been
conducted and the core arrangement which yields the
minimal losses over all runs is selected as the most ap-
propriate. At each run, the GA terminates when the
best core arrangement remains constant for 30 number
of generations, indicating that further optimization is
unlikely. Using this termination criterion, the average
number of GA cycles over all 8 runs is 168. Since the
cost of each cycle is517 ms (see Table5 for Q = 30%
and mutation rate6%), the total complexity of the GA
over all cycles and runs is 8*168*517 ms= 11.58 min.

At each GA cycle, the neural network is activated to
predict the actual transformer losses. Since in our case,
50 transformers are constructed (100 large/small cores)
and the GA population consists of25 chromosomes,
the neural network is applied50 ∗ 25 = 1250 times
for every GA cycle. The average time that the neural
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Fig. 10. Total transformer losses versus mutation probability for 100 GA cycles. (a) Different initial population selection. (b) Different number
of selected parents.

Table 4
Average execution of the genetic algorithm for different values ofQ

Number of parents Cost/GA cycle Average iterations Total cost
(Q) (msec) (sec)

10% 295 344 101.48
20% 381 142 54.02
30% 498 77 38.35
40% 604 71 42.88
50% 700 67 46.90
60% 820 64 52.48

Table 5
Average execution of the genetic algorithm for different mutation
probabilities

Mutation rate Cost/GA cycle Average iterations Total cost
(msec) (sec)

1% 396 803 317.98
2% 446 476 212.30
4% 479 86 41.19
6% 517 62 32.05
8% 562 75 42.15

10% 618 95 58.71

network requires to predict the actual losses of all 50
transformers and 25 chromosomes has been measured
to be 358 ms. As a result, the total cost over the average
168 GA cycles and 8 runs is 8.02 min. Thus, the total
cost of the proposed neural-genetic algorithm grouping
scheme is11.58 + 8.02 = 19.6 min.

In this cost, it should be added the time that the
network requires to adapt its weights (network weight
adaptation). However, this is performed only in case
that the network prediction accuracy is considered
poor. In our experiments, where 30 different produc-

tion batches have been examined, the weight adaptation
mechanism has been activated only once and the total
cost for this weight perturbation was1 s if m = 8. For
the above results, a P-II (∼ 350 MHz) PC has been used
with a C implementation of the proposed neural-genetic
grouping scheme.

It should be mentioned that the execution time of the
proposed algorithm is small compared to other times
involved in the transformer construction process. For
example, only the annealing of the individual cores
takes about 11.5 h to be completed. Furthermore, the
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Fig. 11. Evaluation of the genetic algorithm for different production conditions: (a) production batch of 50 transformers, 100 kVA, 50 Hz of the
second production condition, (b) production batch of 50 transformers, 250 kVA, 50 Hz, second production condition.

Fig. 12. Iron loss distribution of 50 transformers, 160 kVA (second production condition) using the quality class method as grouping process.

proposed scheme can be applied “in parallel” with the
transformer construction. For example, it can be con-
ducted, while the individual core-department produces
the cores of the following batch and the transformer-
department constructs the transformers of the previous
batch.

6.4. Iron loss reduction

In this subsection, the proposed neural network-
genetic algorithm scheme is compared with the min-
imal deviation grouping process and the quality class

method, both used in the current practice for a produc-
tion batch of 50 transformers of 160 kVA.

Initially, the 100 small and 100 large individual cores
(producing 50 transformers) have been grouped using
the quality class method (see Section 2), and the dis-
tribution of the transformer iron losses is depicted in
Fig. 12. In this experiment, the desired (guaranteed)
losses, which are related toP0, are 315 W, while the de-
signed losses are 296 W, (i.e. about 6% lower than the
guaranteed losses). Similarly, in Fig. 13 the distribu-
tion of iron losses is depicted if the grouping method of
the minimal deviation (presented in [8]) is used for the
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Fig. 13. Iron loss distribution of 50 transformers, 160 kVA (second production condition) using the minimal deviation method as grouping
process.

Fig. 14. Iron loss distribution of 50 transformers, 160 kVA (second production condition) using the proposed neural network-genetic algorithm
scheme.

core arrangement. In this experiment, the same guar-
anteed losses are used, while the designed iron losses
are 4.8% lower the guaranteed ones, since it is expected
that this method provides better results than the quality
class approach. As is observed, in Fig. 12, the aver-
age losses are 307.31 W, (i.e. 3.82% higher than the

designed ones), while a loss fluctuation of 48.5 W is
encountered. On the contrary, in Fig. 13, the average
losses are 310.6 W, (i.e. 3.53% higher than the designed
losses), while the loss fluctuation has been restricted to
39.4 W.

Finally, Figure 14 presents the iron loss distribution



N.D. Doulamis et al. / A synergetic neural network-genetic scheme for optimal transformer construction 53

94

95

96

97

98

99

100

Magnetic Material Copper Insulting Material Oil Total Material Cost

Quality Class
Minimal Deviation
NN-GA scheme

Fig. 15. Cost reduction for transformers of 50 kVA (first condition).

when the proposed neural network-genetic algorithm
scheme is used for transformer construction. In this
case, a much smaller safety margin has been selected
and the designed losses are 311 W, (i.e. only 1.3%
lower than the guaranteed ones). However, as can be
seen from Fig. 14, the average losses are very close
to the designed ones (313.15 W or 0.69% higher than
the designed losses), while the smallest loss fluctuation
is encountered (23.6 W). Furthermore, the maximum
(minimum) losses in this case is lower (higher) than
those obtained from the other two cases.

Usually, transformers, whose iron losses are about
10% higher than the guaranteed losses (in our case
346 W), are considered as unacceptable by the cus-
tomers [3,15]. Consequently, as depicted in Figs 12–
14, all grouping methods yield transformers of accept-
able quality. However, in the proposed neural-genetic
scheme, the width of loss distribution was narrower
than the other two grouping methods. Thus, it is less
probable to generate transformers whose iron losses vi-
olates the upper limit of 346 W. Furthermore, the pro-
posed scheme also yields a significant reduction of the
production cost. This is due to the fact that smaller
safety margin is used in this case which saves mag-
netic material. The latter also leads to transformers of
smaller dimensions and further results in a reduction
of the weight of the material of the windings (copper),
insulating materials and transformer oil or equivalently
to an overall reduction of the required cost. The reduc-
tion of the material cost is presented in Fig. 15 in case
of 50 transformers of 50 kVA (first condition). In this
figure, all costs have been depicted with respect to the
cost of the quality class method, the cost of which is
assumed to be 100.

7. Conclusion

In this paper, a synergetic neural network and ge-
netic algorithm scheme has been proposed to reduce
transformer iron losses by exploiting information de-
rived from both the design and the transformer con-
struction phase. More specifically, for a given number
of small and large individual cores, our target is to es-
timate the optimal core arrangement so that transform-
ers of minimal iron losses are assembled. This is ac-
complished by minimizing a cost function, which ex-
presses the aggregate iron losses over all possible con-
structed transformers, using an evolutionary program-
ming scheme. Since, however, the actual iron losses
of a three-transformer are in fact unknown before the
transformer construction, a neural network architecture
is adopted in this paper to provide an accurate estimate
of the transformer losses prior to their assembly. Sev-
eral actual core measurements, transformer design pa-
rameters along with the way of core arrangement are
used as inputs to the network. Furthermore, the predic-
tion accuracy of the neural network model is monitored
after the transformer construction (evaluation phase).
In case that a poor prediction accuracy is encountered,
a weight adaptation mechanism is activated to estimate
new network weights taking into account both the cur-
rent and the previous network knowledge.

The proposed scheme has been applied in our indus-
trial environment and has been compared with the cur-
rent grouping techniques as they are discussed in Sec-
tion 2. In particular, it has been observed that the neu-
ral network-genetic algorithm approach yields a signif-
icant reduction between the deviation of the designed
and the actual iron losses. With such a reduction, the
transformers can be designed with a smaller safety mar-
gin, which saves magnetic material and reduces the
total production cost.
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Appendix A

Let us define bywi,b,wi,a the(p+1)×1 vectors con-
taining all network weights and biases, which connect
the ith hidden neuron to the input layer before and af-
ter the weight adaptation respectively. Then, matrices
Wa, Wb can be formed as follows

Wa = [w1,a w2,a . . . wl,a] and
(A1)

Wb = [w1,b w2,b . . . wl,b]

similarly to the matrixW of Section 3. Let us also
define byvb, va the l × 1 vectors which contain the
network weights connecting theith hidden neuron to
the output neuron before and after the weight adaptation
respectively. Similarly,θa, θb correspond to the biases
of the output neuron. Since Eq. (10) is valid for all
network weights, it can be derived that

Wa = Wb + ∆w, va = vb + ∆v,
(A2)

θa = θb + ∆θ

where∆W,∆v,∆θ are small increments of the respec-
tive network weights.

Thus, Eq. (6) can be written as for a given transformer
zi

ua(x(zi))
(A3)

= f
(
WT

b · x(zi) + ∆WT · x(zi)
)

where subscriptb anda refer to before and after the
weight adaptation respectively.

Application of a first order Taylor series expansion
to Eq. (A3) yields to

ua(x(zi))
(A4)

= f
(
WT

b · x(zi) +Q · ∆WT · x(zi)
)

whereQ is the gradient off(·) and can be expressed
by the following diagonal matrix,

Q = diag{δ1,b(x(zi)), . . . , δl,b(x(zi))} (A5)

where

δi,b(x(zi))
(A6)

= ui,b(x(zi)) · [1 − ui,b(x(zi))]

indicate the gradient of the hidden neuron output, as-
suming that the activation function of the hidden neu-
rons is the sigmoid.

Thus, Eq. (11b) can be written as for a given trans-
formerzi

Sa
zi
≈ ywa(x(zi))

= vT
b · ua(x(zi)) + ∆vT · ua(x(zi)) (A7)

+θb + ∆θ

Combining, Eqs (A7) and (A4), and ignoring the
second order terms we can find that

Sa
zi
− vT

b · ub(x(zi)) − θb

= vT
b ·Q · ∆WT · x(zi) (A8)

+∆vT · ub(x(zi)) + ∆θ

Equation (A8) can be rewritten as

b(zi) = a(zi)T · ∆w (A9)

where

b(zi) ≡ Sa
zi
− vT

b · ub(x(zi)) − θb (A10)

is the prediction error before weight adaptation, while
vectora(zi) is produced by reordering the right term of
Eq. (A8) for all network weights. In the previous equa-
tions, we have added the dependence on the transformer
zi.

a(zi)T · ∆w = vT
b ·Q · ∆WT · x(zi)

(A11)
+∆vT · ub(x(zi)) + ∆θ

Equation (A11) is a linear equation with respect to
the weights increment∆w and vectora(zi) can be
estimated by simply identifying the terms of the right
and left hand of Eq. (A10). In particular,

a(zi)[vec{r · x(zi)T }ub(x(zi)) 1]T (A12)

with r = vT
b ·Q and vec{r · x(zi)T } denoting a vector

formed by stacking up all rows of matrixr · x(z i)T .
Equation A(8) for all transformersz i can be written

as follows

b = A · ∆w (A13)

where

b = [b(z1)b(z2) . . . b(zm)]T (A14)

and

AT = [a(z1)a(z2) . . . a(zm)] (A15)
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Appendix B

Let us first definegi the difference between the target
output and the network output for theith element of
the training setT (old information) in case that the old
weights are used.

gi =
(
Sa

ti
− ywb

(x(ti))
)

(B1)

Let us also recall that

δi(tj) = ui,b(x(tj)) · (1 − ui,b(x(tj))) (B2)

is the derivative of the ith hidden neuron output when
the transformerti is fed as input to the network using
the old weights,wb.

Differentiating Eq. (11a) with respect to the network
weightswj,k, we have

∂Di,b

∂wj,k
= −gi · vj · δk(x(ti)) · xk(ti) (B3)

wherexk(ti) is thekth element of the feature vector
x(ti) of the transformerti. We recall thatDi is the
squared error of the ith element ofT , that isD i =(
Sa

ti
− ywb

(x(ti))
)2

while wj,k refers to the network
weight that connects thejth hidden neuron with thekth
input element. Thewj,p+1 is the bias of thejth hidden
neuron and thus in this casexp+1(ti) = 1 for all ti.
Differentiating Eq. (11a) with respect to the network
weightsvk andθ we find that

∂Di

∂vk
= −gi · uk(x(ti)) (B4a)

∂Di

∂vk
= −gi (B4b)

Consequently, the sensitivity of the errorD i to all
network weights can be expressed as

∆Di =
∑
j,k

∂Di

∂wj,k
∆wj,k +

∑
k

∂Di

∂vk
∆vk

(B5)
+
∂Di

∂θ
∆θ

Therefore, for all elements inT . That is for all
i = 2, . . . , L the previous equation can be written in a
matrix form

∆D = J · ∆w (B6)

where

∆D = [∆D1 ∆D2 ∆DL]T (B7)

J is the Jacobian matrix given by

J =



· · · ∂D1

∂wj,k
· · · ∂D1

∂vk
· · · ∂D1

∂φ

· · · ∂D2
∂wj,k

· · · ∂D2
∂vk

· · · ∂D2
∂φ

...
...

...
...

· · · ∂DL

∂wj,k
· · · ∂DL

∂vk
· · · ∂DL

∂φ


 (B8)

The effect of perturbation∆w in Eq. (11a) can

be modeled by
L∑

i=1

∆D2
i [4]. Thus, minimization of

Eq. (11a) is equivalent to minimization of

min
1
2
∆wT · JT · J · ∆w (B9)

References

[1] S.A. Stigant and A.C. Franklin,The J&P Transformer Book,
Newnes-Butterworths, 1973.

[2] R.L. Bean, N. Chackan, H.R. Moore and E.C. Wentz,Trans-
formers for the Electric Power Industry, Westinghouse Electric
Corporation, 1959.

[3] BS EN 60076-1, Power Transformers – Part 1: General, 1997.
[4] A. Doulamis, N. Doulamis and S. Kollias, On Line Retrain-

able Neural Networks: Improving the Performance of Neural
Networks in Image Analysis Problems,IEEE Trans. on Neural
Networks 11 (2000), 137–155.

[5] A.E. Fitzerald and C. Kingsley, Electric Machinery,
MacGraw-Hill, 1961.

[6] E.F. Fuchs, M.A.S. Masoum and D.J. Roesler, Large Signal
Nonlinear Model of Anisotropic Transformers for Nonsinu-
soidal Operation; Part II: Magnetizing and Core-loss Currents,
IEEE Transactions on Power Delivery 6 (1991), 1509–1516.

[7] P.S. Georgilakis, N.D. Hatziargyriou, N.D. Doulamis, A.D.
Doulamis and S.D. Kollias, Prediction of Iron Losses of
Wound Core Distribution Transformers Based on Artificial
Neural Networks,Neurocomputing 23 (1998), 15–29.

[8] P.S. Georgilakis, N.D. Hatziargyriou, N.D. Doulamis, A.D.
Doulamis and S.D. Kollias, A Neural Network Framework
for Predicting Transformer Core Losses, IEEE Int. Confer-
ence on Power Industry Computer Applications (PICA), San
Francisco, USA, 1999.

[9] P.S. Georgilakis, Contribution of artificial intelligence tech-
niques in the reduction of distribution transformer iron losses,
Ph.D. Dissertation, National Technical University of Athens,
2000.

[10] D.E. Goldberg,Genetic Algorithm in Search, Optimization
and Machine Learning, Addison Wesley, 1989.

[11] R.S. Girgis, D.A. Yannucci and J.B. Templeton, Performance
Parameters on Power Transformers using 3D Magnetic Field
Calculations,IEEE Transactions on PAS 103 (1984), 2708–
2713.

[12] N.D. Hatziargyriou, P.S. Georgilakis, D.S. Spiliopoulos and
J.A. Bakopoulos, Quality Improvement of individual Cores of
Distribution Transformers using Decision Trees,Int. Journal
of Engineering Intelligent Systems 6 (1998), 141–146.

[13] S. Haykin,Neural Networks: A Comprehensive Foundation,
Macmillan, 1994.

[14] B. Hochart, Power Transformer Handbook, Butterworths,
1987.



56 N.D. Doulamis et al. / A synergetic neural network-genetic scheme for optimal transformer construction

[15] IEC 76-1, Power Transformers – Part 1: General, 1993.
[16] H. Kobayashi,Modeling and Analysis, Addison-Welsey, 1981.
[17] S. Kollias and D. Anastassiou, An Adaptive Least Squares

Algorithm for the Efficient Training of Artificial Neural Net-
works,IEEE Trans. on Circuits and Systems 36 (1989), 1092–
1101.

[18] G. Lian, Y. Ruoping and C. Pizhang, An Equivalent Magne-
tization Surface Current Approach of Calculation 3D-leakage
Fields of a Transformer,IEEE Transactions on Power Delivery
2 (1987), 817–822.

[19] D.J. Luenberger,Linear and non Linear Programming,
Addison-Wesley, 1984.

[20] B.W. McConnell, Increasing Distribution Transformer Effi-
ciency: Potential for Energy Savings,IEEE Power Engineer-
ing Review 18 (1998), 8–10.

[21] G.F. Mechler and R.S. Girgis, Calculation of Spatial Loss
Distribution in Stacked Power and Distribution Transformer
Cores,IEEE Transactions on Power Delivery 13 (1998), 532–
537.

[22] Members of the Staff of the Department of Electrical Engi-
neering of M.I.T., Magnetic Circuits and transformers, John
Wiley, 1947.

[23] Z. Michalewicz, Genetic Algorithms + Data Structures =
Evolution Programs, Springer Verlag, 1994.

[24] K. Milodakis, Quality Control of Transformer Cores, Techni-
cal Report University of Crete, 1993.

[25] E. Oja, Neural Networks, Principal Components and Sub-
spaces,Journal of Neural Systems 1 (1989), 1–68.

[26] B.C. Papadias, N.D. Hatziargyriou, J.A. Bakopoulos and J.M.
Prousalidis, Three Phase Transformer Modelling for Fast Elec-
tromagnetic Transients,IEEE Transactions on Power Delivery
9 (1994), 1151–1159.

[27] D. Paparigas, D. Spiliopoulos, S. Elefsiniotis and J. Bakopou-
los, Estimation of Magnetic Material for Individual Trans-
formers Cores, Proc. of European Conference on Technologi-
cal and Economic Advances of the Use of Distribution Trans-
formers, Greece, May 1994.

[28] Proceedings of the International Conference on Electric Utility
Deregulation and Restructuring and Power Technologies 2000,
Loi Lei Lai (Editor), City University, London, IEEE Catalog
N00EX382, April 2000.


